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Abstract—Existing approaches to Robot Programming by
Demonstration (PbD) require multiple demonstrations to capture
task information that lets robots generalize to unseen situations.
However, providing these demonstrations is cumbersome for end-
users. In addition, users who are not familiar with the system
often fail to demonstrate sufficiently varied demonstrations. We
propose an alternative PbD framework that involves demonstrat-
ing the task once and then providing additional task information
explicitly, through interactions with a visualization of the action.
We present a simple action representation that supports this
framework and describe a system that implements the framework
on a two-armed mobile manipulator. We demonstrate the power
of this system by evaluating it on a diverse task benchmark that
involves manipulation of everyday objects. We then demonstrate
that the system is easy to learn and use for novice users through
a user study in which participants program a subset of the
benchmark. We characterize the limitations of our system in task
generalization and end-user interactions and present extensions
that could address some of the limitations.

I. INTRODUCTION

General-purpose mobile manipulators have the physical
capability to perform a diverse range of useful tasks in human
environments. However, pre-programming these robots for
all potential uses is impossible—every combination of user,
environment and task has different requirements for what the
robot needs to do. Instead, Programming by Demonstration
(PbD) [3] (also known as Learning from Demonstration [2])
techniques aim to enable end-users to program a general-
purpose robot for their specific purposes, by demonstrating
the desired behavior in the context of use.

Existing techniques for PbD require multiple, often many,
demonstrations of the same task. Multiple demonstrations pro-
vide information that allows the robot to generalize learned ac-
tions to unseen situations. Different types of such information
include invariance of certain state variables [10, 11], allowed
variance of certain state variables [5, 6], characteristics of the
task in different parts of the state space [15, 8], relativeness
to objects in the environment [12], segmentations of the task
[12], task constraints [14] or partial-ordering of task steps [13].
To achieve generalizable tasks, these techniques require the
user to provide representative demonstrations that cover the
state space or alternative settings of the environment. However,

1This author is currently affiliated with Google[x] but contributed to the
work while affiliated with Willow Garage, Inc.
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Fig. 1. Framework for PbD with interactive action visualization.

potential users of the system are often unaware of these re-
quirements and are likely to have inaccurate mental models of
how the robot learns from the provided demonstrations. Prior
work in the area of human-robot interaction has demonstrated
that this mismatch of mental models results in datasets that do
not satisfy the system’s requirements for learning generalizable
tasks [1, 16]. Furthermore, these users state that they dislike
having to repeat the same task demonstration [1].

To address these issues, we propose an alternative PbD
framework that involves demonstrating the task only once. The
user provides additional task information explicitly, through
interactions with a visualization of the learned action, rather
than providing additional demonstrations. We propose a simple
yet powerful action representation that supports the learning of
generalizable tasks with this approach by allowing interactive
visualizations of the learned action. We present and evaluate a
system that implements this approach on a two-armed mobile
manipulator. We demonstrate the range of manipulation tasks
that can be achieved with our system and validate its usability
and intuitiveness through a user-study (N=10).

II. APPROACH

A. Action Representation

We represent an action as a sparse sequence of end-effector
states relative to discrete landmarks in the environment. We
denote the nth action as An = {(θf , f, g)k : k = 1..K},
where θf ∈ SE(3) represents the robot’s 6 Degree-of-Freedom
(DoF) end-effector configuration (translation and rotation) in
the frame of reference f ∈ {`0, .., `Nd}, which can be any



of the Nd available landmarks (including the robot base `0).
g ∈ {0, 1} represents its binary gripper state (open or closed).
We represent landmarks in the environment as a tuple `i =
(φ, τ, vτ ), where φ ∈ SE(3) is the last recorded configuration
of the landmark in the robot’s coordinate frame, τ ∈ Sτ is
the type of the landmark and vτ ∈ Rdτ is a type-dependent
descriptor of the landmark consisting of a vector of reals.

B. Action Initialization by Demonstration

Actions are initialized with a single demonstration. This
involves directly adding action states (θf , f, g)t into the
action by demonstrating each state. Before a demonstration,
the robot accumulates the list of potential landmarks Ld =
{`0, . . . , `Nd} by searching for landmarks in the environment
and recording their initial configuration. Then the user manip-
ulates the robot’s arms and starts to add steps into the action
at chosen configurations. At any time, the current action state
(θf , f, g)t is determined by the robot’s current arm config-
uration ζt (controlled by the human) and the configuration
of the landmarks in Ld (fixed at the start of demonstration).
The frame of reference f for the state is determined by the
proximity of the end-effector to the landmarks. If no landmarks
are within a certain threshold dmax (empirically determined),
then f = `0 = (φ0, robot, null) where φ0 is the origin of
the robot’s coordinate frame, i.e., the pose is considered to
be absolute. Otherwise, the frame of reference is the nearest
landmark, i.e., f = `i for i = argmini∈1..Nd d(θ

`0 , φi) and
the pose is considered to be relative. The robot’s relative
end-effector configuration θf is computed by transforming
the absolute end-effector configuration into the f coordinate
frame, i.e., Tθf = T−1φ Tθ`0 , where Tθ is the transformation
matrix corresponding to the configuration θ.

After an action has been initialized, it can be cleared and
re-initialized, edited (Sec. II-C), or executed (Sec. II-D).

C. Action Editing

End-user programming (EUP) is an active research area
that aims to enable everyday people who are not professional
software developers to create custom programs that meet their
particular needs [7, 17, 9]. Commonly studied problems in
the EUP literature include programming spreadsheets and
webpages. One of the core concerns in EUP is to provide
the user with an accurate mental model of what the system
can represent so as to allow them to directly edit represen-
tations. For instance, in spreadsheets the user can program
simple functions by providing example input-output pairs;
however, more complex functions require the user to edit the
formula of a function. Our work aims to apply the same idea
to robot PbD. To this end, it is important for the system
implementation of our approach to provide visualizations of
the action representation described in Sec. II-A. Furthermore,
these visualizations should be interactive, to allow the user to
directly edit components of this representation.

We allow the user to perform the following edits on the
steps (θf , f, g)k of a learned action An.

• Reference frame change: During the initial demon-
stration each pose is automatically assigned a frame of
reference based on its proximity to landmarks. After the
demonstration the user can change the reference frame
f of any action step k to be another available landmark;
f ← fedit ∈ Ld.

• Transformation of configuration: The user can directly
edit the configuration of saved action states; θf ← θedit.

• Delete pose: The user can remove action states that were
saved during the demonstration; An ← An\(θf , f, g)edit

In addition to these edits on the programmed action, we
allow the user to edit the robot’s representation of the world:
• Delete landmark: The user can remove landmarks (ex-

cept robot base `0) from the set of available landmarks
that are considered part of the learned action; Ld ←
Ld\`edit

D. Action Execution

To perform an action An the robot first accumulates the
list of current landmarks Le = {`0, . . . , `Ne}. The robot
then needs to perform a rigid registration between landmarks
La ⊂ Ld referenced in An and the set of landmarks Le

available at execution time. This is done through a simple bi-
partite graph cut algorithm that starts with all possible pairings
between landmarks of same type in La and Le. The similarity
between two landmarks of the same type is computed with
a type-specific, real-valued similarity function sτ (v1, v2) over
the landmark descriptors; s : Rdτ × Rdτ → R. The algorithm
greedily removes the pair of landmarks with highest similarity
from the graph until all landmarks La of the action are
registered. If at least one landmark in La remains unregistered,
the action is deemed un-executable in the current environment.

Once all landmarks are registered, the absolute end-effector
poses required to execute the task are computed based on
the current configuration of the landmarks. The desired arm
configuration to achieve each end-effector pose is computed
using inverse kinematics (IK). If there is at least one pose that
has no IK solutions, the action is deemed un-executable in
the current environment. Otherwise, the robot reproduces the
action by moving through these configurations with a certain
velocity profile. After reaching the kth configuration θk, the
robot changes the gripper state to gk if different from the
current gripper state.

III. SYSTEM

A. Platform

The robot platform used in this work is PR2 (Personal
Robot 2), a mobile manipulator with two 7-DoF arms and
an omnidirectional base. PR2’s arms are passively balanced
through a spring counterbalance system. This provides natural
gravity-compensation, allowing users to move the robot’s arm
kinesthetically. When powered, the arms can carry up to 2.2
kg. Each arm has a 1 DoF, under-actuated gripper.

The software written for this work is developed within ROS
(Robot Operating System) and was released as an open-source



TABLE I
COMPONENTS OF THE SYSTEM STATE.

Experiment
state

Actions programmed so far A = {Ai}NA
i=1, current

action index n ∈ {1..NA}

Robot state Joint configurations ζR, ζL, gripper states gR, gL ∈
{0, 1} and arm stiffnesses αR, αL ∈ {0, 1}

World state Set of available landmarks L = {`1, . . . , `N}

Action state (Fully determined by the robot and world states)
States of the robot end-effectors relative to the land-
marks in the environment; (θf , f, g)R, (θf , f, g)L

package2. During kinesthetic interactions with the robot, users
wear a Shure wireless microphone headset to give commands
to the robot. Speech recognition is done with Pocketsphinx,
and text-to-speech on the robot is done with a common ROS
package3. For perception of landmarks, we use the Kinect
sensor mounted on PR2’s pan-tilt head.

B. Implementation Details

Some specifics of our system within the general framework
described in Sec. II are as follows. Since the robot has two
arms, two separate actions ARn and ALn are maintained for
the right and left arms. These actions have equal numbers
of steps, as poses are added to both actions simultaneously.
During execution, the velocity profiles are adjusted such that
both arms reach the next configuration at the same time.

Our implementation has two types of landmarks: (a) table-
top objects with 3D volume and (b) 2D fiducial markers
(Sτ = {object,marker}). Objects are detected using the
ROS tabletop cluster detector4, which determines the dominant
plane in the Kinect point cloud and then clusters portions of
the point cloud above this plane. We represent the landmark
corresponding to each object with its bounding box: the
frame of reference (φ) for the landmark is the box center
and the descriptor of the landmark is the dimensions of the
box, vobject = (width, length, height). Fiducials are detected
using the Alvar-based ROS package5, which provides its 6-
DoF configuration (φ) and a unique identifier used as the
descriptor of the landmark, vmarker = (id). To measure the
similarity between landmarks of type object we use the L1-
norm. The similarity between marker landmarks is infinite for
markers of same id and zero for different ones. In other words,
if the action references landmarks with a unique identifier, the
execution of that action requires that particular landmark to
be present. Similarly, we put a threshold for matching object
landmarks to avoid matching very different landmarks in the
absence of the desired ones.

C. Dialog System

During a demonstration, the user interacts with the PbD
system through a simple state-based dialog system with a
finite command set. The response to each command differs

2http://wiki.ros.org/pr2 pbd
3http://wiki.ros.org/sound play
4http://wiki.ros.org/tabletop object detector
5http://wiki.ros.org/ar track alvar

TABLE II
LIST OF DIALOG COMMANDS AND THEIR EFFECTS ON THE SYSTEM STATE.
FOR COMMANDS THAT DO NOT SPECIFY RIGHT/LEFT, THE OPERATION IS

PERFORMED FOR BOTH ARMS, I.E., AR
n AND AL

n .

Command Effect of command on system state

RELEASE/HOLD Changes the stiffness of the arms;
RIGHT/LEFT ARM αs ← ¬αs where s ∈ {R,L}.

OPEN/CLOSE Changes the state of the gripper;
RIGHT/LEFT HAND gs ← ¬gs where s ∈ {R,L}.

CREATE NEW ACTION Adds an empty action to the action set;
n← |A|+1,An ← {}, A← A∪An.

RECORD OBJECT POSES Detects all landmarks in the environ-
ment; Ld ← Lt.

SAVE POSE Saves the current state into the current
action; An ← An ∪ (θf , f, g)t.

EXECUTE ACTION Starts the execution.

STOP EXECUTION Stops ongoing exection.

DELETE LAST POSE Removes the last step from the current
action;

DELETE ALL POSES Clears the current action; An ← {}.

NEXT/PREV. ACTION if (n > 1 and n < |A|): n← n± 1

based on the system state, which is a combination of the
experiment, robot and world states (Table I). The experiment
state involves the set of skills that have been programmed so
far and the index of the current skill. The robot state involves
the arm configurations, gripper states (0:closed, 1:open) and
arm stiffnesses (0:relaxed, 1:stiff). The world state involves
the last perceived landmarks.

The commands are explained in Table II, excluding the
command TEST MICROPHONE which has no effect on the
system state. The response to a command involves (i) a change
in the system state, (ii) a speech response uttered by the robot,
and (iii) a gaze action or head gesture. For example, after the
user gives the RELAX RIGHT ARM command, the robot lowers
the stiffness of the right arm and says “Right arm released”
while glancing towards the right arm.

Programming one action typically has the following pro-
gression: the user creates a new action with the command
CREATE NEW ACTION, and the robot responds “Created action
n.” Then the command RECORD OBJECT POSES is used to
trigger the robot’s landmark search. The robot responds with
“Object poses recorded” if there is at least one object in the
environment; otherwise it says “No objects detected.” The
user then relaxes the robot’s arms (if needed), moves them
to desired target poses, and says SAVE POSE or OPEN/CLOSE
RIGHT/LEFT HAND.” Finally, the command EXECUTE AC-
TION is used for reproducing the action in a new situation. If
the action is not executable (Sec. II-D), the robot says “Cannot
execute action”. Otherwise, it says “Starting execution” and
starts to move its arms. Upon reaching the last pose in the
action, the robot says “Execution ended.” During execution,
the robot only responds to the command STOP EXECUTION.

http://wiki.ros.org/pr2_pbd
http://wiki.ros.org/sound_play
http://wiki.ros.org/tabletop_object_detector
http://wiki.ros.org/ar_track_alvar


D. Graphical User Interface

The graphical user interface is a critical component of
our system for the visualization and editing of programmed
actions. Fig. 2(a) shows the visualization of a sample action
and illustrates the different visualization elements that show
the current action representation. These elements include:
• Landmarks: Object landmarks are shown with green

transparent boxes that correspond to the bounding box.
Similarly marker landmarks are shown with a flat green
box aligned with the detected fiducial.

• Poses: End-effector poses corresponding to the steps of
the programmed action are visualized with orange 3D
models of the robot’s gripper. The gripper is open or
closed according to the demonstration.

• Relativeness: Yellow arrows from end-effector pose vi-
sualizations to landmark visualizations indicate that the
landmark is the frame of reference for the pose.

• Order/progression: Thin gray lines between consecutive
poses, together with numbers on top of each keyframe,
indicate sequential ordering relationships of poses.

The end-user editing functionality described in Sec. II-C is
implemented by making these visualizations interactive. The
user can navigate in a third person view in 3D using the mouse.
When the mouse scrolls over anything that is interactive, the
visualization of that element gets highlighted.
• Reference frame change: Users can right click on saved

poses to reveal a linear popup menu (Fig. 2(b)). The first
entry in this menu is “Reference frame” which points to
a second layer menu with the list of possible landmarks,
with the current (automatically assigned) landmark se-
lected. By selecting a different landmark in this list, the
user can chance the frame of reference for this pose.

• Transformation of configuration: If the user clicks once
on a visualized end-effector pose, this reveals a 6-DoF
control around the pose (Fig. 2(c)), allowing the user
to pull the pose in any of three directions or rotate it
around these directions. This allows the user to change
the poses of the action steps saved during the initial
demonstration. The control disappears if the user clicks
on the end-effector again or if a different end-effector is
selected. Another way to edit the configuration of saved
end-effector poses is to reassign the pose to the current
arm configuration. This functionality is provided through
the third entry in the pop-up menu (Fig. 2(b)).

• Delete pose: Users can delete a particular action step
(Fig. 2(b)) by selecting Delete from the pop-up menu.
This removes both right and left arm poses, even though
the user interacts with only one of the two.

• Delete landmark: Users can also remove landmarks from
the robot’s world representation by right clicking on the
visualization of the landmark. This is the only action
allowed on landmark visualizations (Fig. 2(d)).

Our interface also visualizes the detected table plane (pink
colored plane in Fig. 2); however, it is not interactive because
we did not consider the detected table plane as a landmark.

(a) (b)

(c) (d)

Fig. 2. Visualization and editing elements in the Graphical User Interface.

This was due to large variances in the plane detection method
used. Instead we attached a fiducial to the table to allow
relativeness to the table. In addition to the 3D visualization,
our GUI has a side panel that has buttons corresponding
to each speech command. The panel has an icon for each
programmed action allowing direct navigation to previously
programmed actions.

IV. SYSTEMATIC EVALUATION

We first demonstrate our system’s ability to learn a diverse
set of manipulation tasks. For this we created a benchmark task
list that consists of 12 representative manipulation tasks (Table
III). The objects used in these tasks are shown on Fig. 5(a).

A. Protocol

All tasks are separately programmed and tested by one of
the authors. A subset of the tasks were also programmed by
another author to ensure consistency. For each task, the ex-
perimenter first spends time programming an action through a
combination of demonstrations and editing. The experimenter
can execute the action as part of this process and start from
scratch if needed. Once the experimenter is pleased with the
learned action, it is tested in five different initial conditions
that differ in terms of the positions and orientations of the
objects involved in the task. For each test, the success of
the task is noted. Success is task specific and it is judged
by the experimenter. For instance, for the task of picking up
and placing an object (Task 1), the success criterion is the
object being located at a fixed position and orientation at the
end of the execution. For the task of stacking cups (Task 6),
it is required that all cups are stacked together, whereas the
position of the stack of cups does not matter.

B. Results

Figure 3 shows snapshots from successful executions of
each of the twelve tasks6. Figure 4 shows starting conditions
for several of the tasks, along with whether that particular

6Sample executions can be viewed at http://youtu.be/ZHkOeAmWsvk

http://youtu.be/ZHkOeAmWsvk


TABLE III
BENCHMARK TASK LIST.

# Type Description Success

1 Single-armed pick up
and place (1)

Pick up a rigid cleaning
sponge from the top and place
it in a fixed spot.

4/5

2 Single-armed pick up
and place (2)

Pick up a bottle from the side
and place it in a fixed spot.

4/5

3 Single-armed
non-prehensile
manipulation

Push a cleaning sponge with-
out grasping it.

5/5

4 Multi-armed pick up
and place (1)

Pick up an object (tray) with
both arms and place it in a
fixed spot.

3/5

5 Multi-armed pick up
and place (2)

Constrain a plate with one
hand and pick it up with the
other.

5/5

6 Multi object organiza-
tion (1)

Stack cups. 5/5

7 Multi object organiza-
tion (2)

Drop smaller objects (3 build-
ing kit blocks) into a box.

4/5

8 Assembly (1) Screw the lid onto a bottle. 3/5
9 Assembly (2) Put the lid on a pan. 4/5
10 Disassembly (1) Unscrew the lid on a jar. 5/5
11 Disassembly (2) Remove the lid from the pan. 4/5
12 Object state change Close a lunchbox. 4/5

condition resulted in a successful execution. Table III shows
task success statistics. We make the following observations.
Representational power. The diversity of the tasks that can
be programmed with our system (Fig. 3) demonstrates its
representational power. A large number of everyday tasks
can be represented as end-effector movements and gripper
actions relative to objects (landmarks) in the environment.
By allowing multiple landmarks, our representation captures
tasks that involve relations of multiple objects. For instance,
in the cup stacking task (Task 6) the gripper closing poses are
relative to the cups that go on top of the stack and the gripper
opening poses are relative to the cup on which other cups get
stacked (visualized in Fig. 2). This capability is also exploited
in assembly tasks (Task 8 and 9).
The perception bottleneck. While the success rate is overall
high (83% on average) we observed common failures in a
subset of the tasks. Only four out of the 12 tasks were
successful in all five tests. All failures in task executions were
due to landmark localization errors: in certain situations (e.g.,
changed perspective on objects as in Fig. 4 (top row)) the
robot would localize the object with a slight offset, resulting
in a different landmark origin relative to the true geometry
of the object. Consequently the grasp on the object was more
likely to fail or be different from the demonstration. This was
especially problematic in tasks that require a high level of
precision in positioning the grippers relative to the objects,
such as picking up a tray by its handles, screwing the lid on
the bottle or putting the lid on the pan (Tasks 4, 8 and 9).

V. VALIDATION WITH END-USERS

We evaluated the usability of our system as an end-user
tool through a user study in which participants programmed a
subset of the tasks considered in Sec. IV.

Fig. 3. Frames from sample executions of the tasks during testing.

A. Setup

For the user study, the robot was positioned near a table with
a computer. A large table was placed in front of the robot for
manipulation tasks and the objects involved in the tasks to
be programmed were made available (Fig. 5(b)). Participants
had access to the robot, as well as a screen and a mouse to
interact with the GUI. The screen was pointed towards the
robot such that the participant could view the visualization of
the task as they were interacting with the robot. Participants
were equipped with a wireless microphone headset to free their
hands for kinesthetic interactions with the robot.



Fig. 4. Examples of test conditions during evaluation.

(a) (b)

Fig. 5. (a) Objects used in benchmark tasks. (b) Experimental setup for the
user study.

B. Protocol

Each participant was scheduled ahead of time for a one-
hour time slot. Upon arrival, each participant was asked to
sign an informed consent form. The goal of the research was
described, along with the general properties of the system. The
participant was given a full list of available commands with
their descriptions (Table II). To demonstrate the functionality
of the system to the participant, the experimenter programmed
the task of picking up a sponge with one hand and passing it to
the other hand. As part of this demonstration, all commands
were exemplified and the functionality of the GUI and the
visualization were illustrated.

Next, the participant was then given a list of three tasks. The
tasks were tasks 1, 5 and 7 from Table III, in that respective
order. The participants were instructed to program the tasks in
order. After the tasks were explained by the experimenter, the
microphone sensitivity was adjusted for each participant, the
camera was turned on and the experimenter moved away to
a different part of the room. The participants were instructed
to work on a task for as long as they liked, until they were
satisfied with the robot’s performance, and then demonstrate
the task execution to the experimenter.

C. Metrics

The experiments were recorded from a video camera over-
seeing the experiment area. The recordings were used to mea-
sure the success of all programmed actions when executed by
the participant and the time spent on programming each action.
The generalizability of programmed actions was measured
through tests performed later by one of the authors, on five
different scenarios similar to those used in the systematic
testing (Sec. IV). As part of the exit survey, the participants
were asked to rate the robot performance on a scale from

(a) Perceived task 
success

(b) Perceived difficulty 
of programming

(c) Reported usage 
of GUI features

(d) Perceived usefulness 
of GUI features

TASK 1 TASK 5 TASK 7

1

2

3

4

5

Visualization Pose transform
Delete pose

Delete landmark
Ref. frame change

TASK 1 TASK 5 TASK 7

Fig. 6. Summary of questionnaire responses.

1 (complete failure) to 5 (perfect success) as well as their
perceived difficulty of programming each task from 1 (very
easy) to 5 (very hard). The survey also measured the cognitive
load index using the NASA-TLX questionnaire. Finally, par-
ticipants were asked questions about their usage of and their
perceived usefulness of different components of the system:
they were asked how often they used each feature, with the
options being 1 (never), 2 (once), 3 (2-5 times), 4 (5-10 times)
and 5 (more than 10 times), and how useful they thought each
feature was, with the options being 1 (extremely useful), 2
(useful), 3 (somewhat useful), 4 (almost not useful) and 5
(not at all useful).

D. Results

Our user study was completed by 10 participants (6 males, 4
females, age range 19–26) recruited from a university campus
community. Descriptive statistics from this study together
with observations and usage characteristics are given in the
following.
100% success: All participants in our study were able to
program and successfully execute all three tasks. Most of
the participants required more than one attempt to program
all tasks, starting over once or several times by deleting all
poses or creating a new action. However, three participants
successfully programmed the first task (Task 1) on their first
attempt, and two participants programmed the second task
(Task 5) on their first attempt.
Generalization: Table IV shows the success rate of actions
programmed by participants in five novel scenarios, together
with the generalization performance obtained in the systematic
tests (Sec. IV). We observe that the average generalization
performance obtained by the participants is on par with that
of an expert user of the system for Tasks 1 and Task 7. Some
participants were able to program actions that succeeded in all
five test conditions for these two tasks, exceeding the expert
users’ performance.

The most common reason for poor generalization was
observed to be false relativeness to objects. For instance,
in Task 5, the actions programmed by participants 4 and 5
included placement poses that were relative to the initial pose
of the plate. As a result, when the initial plate configuration
was changed, the plate would not be placed at the desired
absolute pose, even if it was successfully grasped. This error is
fixable in the GUI, but the participants were likely not aware of
it as they only tested the action in one scenario. This was partly



because participants were asked to program actions to their
satisfaction and were not explicitly told to program actions
that would generalize to novel scenarios.

Other problems that occurred in the generalization test were
similar to those encountered in the systematic evaluation, i.e.,
predominantly due to limitations in perception. The overall
generalization performance by participants was worst in Task
5. Most likely reasons for this are (i) the difficulty of coor-
dinating two arms, and (ii) the error sensitivity of the initial
contact point with the plate (when pushing to constrain it).
Learnability: Table V shows the time taken to program each
task. While we do not observe a consistent pattern across all
participants, the data suggests a learning effect: some people
spent more on the first task than on the second or third one,
even though the first task was the easiest amongst all three.
It is also worth noting that while some people spent much
more than the average amount of time on the second task
(Task 5), and others on the third task (Task 7), that was
mutually exclusive. There were no participants that spent a
lot of time on both of them. This suggests that most of the
time is spent learning to interact with the robot and with the
system. In addition we observe that the time spent by novices
is significantly larger than the time spent by one of the authors
on teaching the three tasks (Table V). This demonstrates that
our system allows for experienced users to further increase
their efficiency in programming new tasks.

Six participants finished programming all three tasks in less
than 45 minutes from their arrival. Four of these participants
chose to program an additional task. Two chose to program
unscrewing the lid off of a jar (Task 10) from the benchmark,
one chose to program cup stacking (Task 6), and one chose to
program an assembly task of connecting two building blocks
together. All four participants (participants 1, 8, 5 and 6)
were successful in programming their task of choice, spending
9:00, 11:50, 5:30 and 4:30 minutes respectively. This provides
additional evidence for the learning effect, since the tasks
chosen by the participants are arguably more difficult than the
tasks offered in the user study, yet the participants spent about
the same amount of time or less on these tasks. Moreover, the
fact that even novice users are able to program tasks from the
benchmark list strengthens the systematic evaluation result.
Varied user experiences: Figure 6(a-b) shows the survey
responses for perceived success and difficulty of the tasks that
participants programmed. The first task was perceived as the
easiest one and was thought to be most successful. The other
tasks were perceived as harder, but the perceived success was
still very high. This suggests that the participants’ perceived
task difficulty were consistent with our expectation and that the
perceived difficulty did not prevent users from programming
the tasks to their own satisfaction.
Use of system components: We assessed the frequency of use
and the usefulness of visualization and editing functionality
described in Sec. II-C and III-D. The results are presented
in Figure 6 (c-d). The visualization was used most by all
participants and was deemed very useful. The second most
used feature was selectively deleting poses in the GUI. The

TABLE IV
GENERALIZABILITY OF ACTIONS PROGRAMMED BY PARTICIPANTS

(SUCCESSFUL EXECUTIONS OUT OF 5 TESTS).

Task 1 Task 5 Task 7

Participant 1 5 5 4
Participant 2 5 2 5
Participant 3 1 3 5
Participant 4 3 1 5
Participant 5 1 1 3
Participant 6 5 4 5
Participant 7 5 5 3
Participant 8 5 4 4
Participant 9 5 3 1
Participant 10 5 0 4

Average 4 2.8 3.9
St.dev. 1.70 1.75 1.29

Expert 4 5 4

TABLE V
TASK COMPLETION TIMES (MM:SS).

Task 1 Task 5 Task 7 Total

Participant 1 03:10 05:35 06:10 14:55
Participant 2 03:25 18:50 12:05 34:20
Participant 3 05:00 07:20 18:15 30:35
Participant 4 10:00 35:30 09:50 55:20
Participant 5 09:45 04:40 17:30 31:55
Participant 6 12:30 10:20 10:20 33:10
Participant 7 04:40 33:50 04:50 43:20
Participant 8 02:30 03:50 12:40 19:00
Participant 9 07:50 09:50 07:05 24:45
Participant 10 05:20 08:10 07:00 20:30

Average 06:25 13:47 10:34 30:47
St.dev. 03:24 11:46 04:36 12:04

Expert 1:20 3:05 4:50 9:15

other features were used less, but were still considered useful.
This suggests that the contribution of the action visualization
was larger than that of the editing functionality in enabling
the programming of useful actions. In other words, the visu-
alization helped users get a clear mental model of how the
actions were represented (e.g., what the robot could see on
the table, when poses ended up being relative to these objects,
etc.) and they provided demonstrations that created correct
actions rather than requiring post-editing (e.g., if they intended
a pose to be absolute, they made sure to move the end-effector
sufficiently far from all objects on the table).

VI. DISCUSSION

A. Relation to Previous Work

Our approach is inspired by the framework proposed by
Niekum et al. [12]; however, it differs in two fundamental
ways: (i) rather than automatically segmenting a continuous
action demonstration, we directly solicit segmented demon-
strations in the form of sparse targets (e.g., as in [1]), and (ii)
rather than discovering the frame of reference for segments
from invariances in multiple demonstrations, we use a simple
heuristic (proximity) to assign frames of reference to segments.

Our action representation has two key expressivity limita-
tions compared to existing approaches. Representing action
segments with a single keyframe, rather than a continuous



trajectory as in [12], limits the types of movements that can
be expressed. For instance, smooth curved movements, such as
scrubbing a surface with a brush, are difficult to capture with
a series of sparse poses. Second, representing each segment
of the action as a single target pose, rather than learning a
distribution over possible target poses from multiple demon-
strations, limits the generalizability of programmed actions.
Probabilistic targets, as in [1], would give the robot alternative
ways of executing an action in a given scenario. Nonetheless,
our evaluation (Sec. IV) demonstrates that our simple action
representation has sufficient expressivity to capture a diverse
set of object manipulation actions and generalizes reasonably
well to different initial configurations of objects.

The interaction paradigm proposed in this paper is compara-
ble to Cakmak & Thomaz’s active PbD approach of collecting
few demonstrations from the end-user, and then having the
robot generate questions to gather more information [4]. While
answering questions might be more intuitive for end-users
initially, the information bandwidth of verbal questions are
limited. Our approach provides a more efficient way of getting
information from the user by exploiting rich interactions with a
graphical interface. Additionally, in our approach, users decide
what information to provide, as opposed to letting the robot
decide what information they should provide. Note that our
approach requires actions to be visualizable, while active PbD
requires actions to be amenable to different question types.
Hence, the choice of interaction paradigm in PbD strongly
depends on the choice of action representation.

Our approach also has similarities with typical lead-by-the-
nose interfaces provided with many industrial robots, which
allow users to kinesthetically demonstrate desired robot arm
poses or paths; however, these demonstrations result in open-
loop, joint-angle trajectories that do not allow for general-
ization. More similar is the teaching interface for Rethink
Robotics’ Baxter Robot, which allows people to kinesthetically
demonstrate overhead pick-and-place trajectories relative to
objects perceived by the robot.

B. Limitations and Possible Extensions

Next, we highlight some of the limitations of our represen-
tation, system, and interface, and we propose extensions that
will provide greater generalizability and usability.

1) Relaxed relativeness: In developing the benchmark task
list we noticed that certain manipulation tasks that naturally
occur in human environments were not captured by our
representation. An example is pushing a book to the edge of
the table. Our framework requires pushing to a fully specified
location whereas this task only specifies one dimension of the
target location. Our framework could be extended to have such
relaxed specifications of action steps.

2) Combining actions in simple programs: Our system
required explicitly repeating similar tasks; for instance, for
stacking three cups, the user had to demonstrate the stacking
of two cups one by one. Also the action is only applicable
when there are three cups. Instead our framework could be
extended to allow simple high-level programs that sequence

demonstrated actions or nest them in while or do-until loops.
This way, the user could demonstrate stacking of one cup and
then have it executed with an arbitrary number of cups until
the action is no longer applicable (all cups are stacked).

3) Richer landmark descriptors: The most significant lim-
itation of our system was the landmark perception. More
sophisticated perception algorithms could allow greater gen-
eralization. For instance, a handle detector would allow pro-
gramming manipulation actions that can be used for all objects
that have similar handles. A corner detector would allow
programming of folding non-rigid clothes. A symmetry de-
tector (together with relaxed relativeness (Sec. VI-B1)) would
allow actions on symmetric objects to be performed in more
situations.

4) Automatic arm switching: Our implementation did not
exploit the fact that the robot’s two arms and grippers are
the same. A simple extension will allow executing actions
programmed with one arm using the other arm or switching
the roles of the two arms in bi-manual actions, allowing greater
generalization.

5) User interface: The most common feedback provided by
participants regarding problems with the user interface was
about the difficulty of interacting with co-located poses in
the 3D environment. This could be addressed by providing
an alternative way of interacting with action steps, such as a
list or filmstrip view of the action steps. This would allow
easy selection of the step to be edited. Second, participants
thought that the progression of the task (i.e. the ordering of
steps) was not elicited well in the 3D visualization. This could
be improved by varying certain features of the visualization
(e.g. color) over the progression of the action.

VII. CONCLUSION

We propose a novel Programming by Demonstration frame-
work that involves initializing actions with a single demonstra-
tion and then providing additional task information explicitly,
through interactions with a visualization of the learned action.
This is in contrast with most existing techniques that require
multiple, often many, demonstrations to capture the additional
task information. We propose a simple yet expressive action
representation that allows learning generalizable actions with
this approach. The simplicity of the representation supports
its visualization and interactive editing by end-users. We
described an implementation of our framework on a PR2
robot and demonstrated its expressive power by evaluating it
on a diverse task benchmark that involves 12 manipulation
tasks with everyday objects. We further presented a user study
(N=10) that demonstrates the ease of learning and intuitiveness
of our system for novice users. Although our approach has
limitations, we have shown that a large number of everyday
tasks can be programmed using our framework. Therefore, we
believe that the PbD framework presented has great potential
for allowing ordinary users to teach future household, service,
and industrial robots to perform useful tasks.
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