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Abstract

Programming by Demonstration (PbD) can allow end-
users to teach robots new actions simply by demon-
strating them. However, learning generalizable actions
requires a large number of demonstrations that is un-
reasonable to expect from end-users. In this paper, we
explore the idea of using crowdsourcing to collect ac-
tion demonstrations from the crowd. We propose a PbD
framework in which the end-user provides an initial
seed demonstration, and then the robot searches for sce-
narios in which the action will not work and requests
the crowd to fix the action for these scenarios. We use
instance-based learning with a simple yet powerful ac-
tion representation that allows an intuitive visualization
of the action. Crowd workers directly interact with these
visualizations to fix them. We demonstrate the utility of
our approach with a user study involving local crowd
workers (N=31) and analyze the collected data and the
impact of alternative design parameters so as to inform
a real-world deployment of our system.

Introduction
Robot Programming by Demonstration (PbD) aims at allow-
ing users to program new capabilities on a general-purpose
robot by demonstrating the desired behavior (Billard et al.
2008). Given a set of demonstrations, the robot builds a
model of the demonstrated action, which allows it to suc-
cessfully reproduce the action in a new situation. Learn-
ing such generalizable models of an action often requires
a large and diverse set of demonstrations. However, requir-
ing end-users to provide these demonstrations is not feasi-
ble. Previous work has shown that the set of demonstra-
tions people provide are not as diverse as most existing
PbD techniques require (Cakmak, Chao, and Thomaz 2010;
Suay, Toris, and Chernova 2012a; Chernova and Veloso
2009). They also provide too few demonstrations when
given the choice (Akgun et al. 2012). Our work aims to
address this issue through crowdsourcing. We propose a
PbD paradigm in which the end-user provides an initial
seed demonstration of an object manipulation action, and
the robot collects more demonstrations from the crowd so
as to improve the generalizability of the action.
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Figure 1: Overview of framework.

The robotics community has explored various ways of
leveraging the crowd to help robotic tasks, some with a fo-
cus similar to ours, on learning new capabilities from crowd
demonstrations (Breazeal et al. 2013; Crick et al. 2011;
Toris, Kent, and Chernova 2014; Chung et al. 2014). Allow-
ing crowd workers to remotely provide demonstrations of
an action is one of the key problems in making this possible.
This is particularly challenging for demonstrating object ma-
nipulation actions, as it requires moving a robot’s manipula-
tors. Although there are ways to move a manipulator through
on-screen interfaces (e.g. (Toris, Kent, and Chernova 2014)),
they are often many folds slower than directly controlling the
robot in a situated interaction. Hence, such interfaces are an
expensive way to collect demonstrations from the crowd. In
this paper, we mitigate this issue by using crowd workers to
fix an action, rather than demonstrate it from scratch.

We propose an instance-based action learning approach
with a simple action representation that allows visualizing
and editing actions without the need to control the robot’s
manipulators. In order to use the crowd effectively, we em-
ploy active learning to select request for the crowd. We em-
pirically demonstrate that this approach allows the robot to
effectively use the crowd to improve the generalizability of
learned actions. We present an analysis of the data collected
from local crowd workers (N=31) and we provide recom-
mendation for a future deployment of our system on the web.

Related work
Robot Programming by Demonstration
Robot Programming by Demonstration (PbD), also known
as Learning from Demonstration or Imitation Learning,



is a field in robotics that aims to enable people to pro-
gram a robot by providing demonstrations of the desired
behavior (Billard et al. 2008; Argall et al. 2009). This
can involve learning what to do (task or goal learning)
(Abbeel, Coates, and Ng 2010; Breazeal and Thomaz 2008;
Saunders, Otero, and Nehaniv 2007) or learning how to
do it (skill, policy, or action learning) (Schaal et al. 2003;
Pastor et al. 2009; Kormushev, Calinon, and Caldwell 2010;
Muelling et al. 2013). The user may directly execute a
task or action to demonstrate it (Breazeal and Thomaz
2008), or control the robot to demonstrate a successful ex-
ecution of the task or action (Calinon and Billard 2009;
Muelling et al. 2013). Our work focuses on learning ma-
nipulation actions that capture how the robot’s manipulators
should move relative to objects in the environment, in order
to accomplish a certain goal. The local user demonstrates an
action by physically controlling the robot’s manipulators.

Although research in PbD has resulted in impressive
robotic capabilities such as flipping a pancake (Kormushev,
Calinon, and Caldwell 2010) or playing ping pong (Muelling
et al. 2013), the focus of this research has not been on end-
users. Most work in the literature involves evaluations with
data provided by the research team rather than potential end-
users. More recently, work in the area of human-robot in-
teraction has started to evaluate PbD systems with users
who are unfamiliar with the system (Akgun et al. 2012;
Suay, Toris, and Chernova 2012b; Koenig, Takayama, and
Matarić 2010) and found that some of the assumptions made
by these methods are not satisfied by demonstrations pro-
vided by end-users. For example, Akgun et al. found that
people were not good at providing smooth and consistent
demonstrations (Akgun et al. 2012). Others found that peo-
ple did not provide sufficient variance in their demonstra-
tions resulting in limited generalization (Cakmak, Chao, and
Thomaz 2010; Chernova and Veloso 2009). These problems
motivate our work on using crowdsourcing to obtain a more
diverse demonstration datasets than a single user could pro-
vide. This also reduces the end-user’s burden of providing a
large number of demonstrations.

Crowdsourcing in Robotics
Crowdsourcing has become a popular way to address prob-
lems that are challenging for robots in unstructured envi-
ronments. For example, Sorokin et al. (Sorokin et al. 2010)
used crowdsourcing to segment and label objects in images
to help a robot grasp unknown objects. Other work used so-
cial media crowdsourcing to label human actions in videos
captured by a robot (Emeli 2012).

The idea of using crowdsourcing to collect demonstra-
tions to learn new capabilities on robots has also been ex-
plored in different ways. A key challenge in this area is to
build interfaces that allow people to provide demonstrations
with standard input and output modalities on common plat-
forms. This problem is addressed in different ways. Cher-
nova et al. used online games to collect a large-scale dataset
of unstructured human-robot interactions, in order to train
a robot for collaborative tasks in a museum setting (Cher-
nova et al. 2011). Crick et al.’s work involved crowd work-
ers remotely teaching a robot to navigate a maze given a

limited perception of the maze (Crick et al. 2011). Both
works exploit the fact that the demonstrations involve few
modalities. Other work by Chung et al. employs goal-based
imitation (Verma and Rao 2006) and exploits the fact that
demonstrations are independent of the robot and does not
require controlling the robot (Chung et al. 2014). Toris et
al.’s system allows people to remotely interact with a robot
in rich ways such as moving its end-effectors, base and head
in various ways (Toris, Kent, and Chernova 2014). Similar to
our work, they used this system in user studies that involved
teaching mobile manipulation tasks to the robot. Our work
contributes to these efforts with the idea of seeding demon-
strations collected from the crowd with a demonstration ob-
tained from a local user. This allows us to collect fixes of the
seed action much more efficiently than collecting complete
demonstrations of the same action from scratch.

Approach
Overview
We propose a PbD framework in which the local user of
the robot provides an initial demonstration and the robot
collects more demonstrations from the crowd using the ini-
tial instance as a seed. The robot then searches for scenar-
ios in which the seed demonstration will not be applicable
but is likely to be fixable. It uses crowdsourcing to obtain
such fixes. We employ an instance-based learning approach
(Aha, Kibler, and Albert 1991) in which the robot does not
maintain an abstraction of the action, but rather stores all
provided demonstrations and decides which one to replicate
and how to replicate it at execution time (similar to (Atke-
son, Moore, and Schaal 1997; Schulman et al. 2013)). To
reproduce the action, the robot selects an instance from its
dataset based on a score function which assesses how likely
an instance is to succeed in a given scenario. Details of our
approach are described next.

Representation, Programming, and Execution
The PbD framework used in this paper is based on Alexan-
drova et al.’s approach with interactive action visualiza-
tions (Alexandrova et al. 2014). In the following we provide
a brief overview of this framework. We represent an action
as a collection of demonstrations, A = {Di : i = 0..Ni},
and we represent a demonstration as a sparse sequence of
end-effector states relative to discrete landmarks in the en-
vironment1.

Before the local user provides a demonstration, the robot
searches the environment and records the poses and descrip-
tors of potential landmarks L = {`0, . . . , `N`

} it detects.
The user records a demonstration by saving a sequence of
end-effector states, which include the 6 Degree-of-Freedom
(DoF) end-effector pose and the binary gripper state (open
or closed). To record a single state, the user manipulates
the robots’ arms into a desired configuration and issues a
“save pose” or “open/close hand” command to the robot.
The frame of reference f for each pose is determined by

1Since our robot has two arms, two separate demonstrationsDR
i

and DL
i are maintained for the right and left arms.



the proximity of that arm’s end-effector to the landmarks. If
no landmarks are within a certain distance, then f = `0 (the
origin of the robot). In this case the pose is considered to
be absolute. Otherwise, the frame of reference is the near-
est landmark f = `n in L, and the pose is considered to be
relative.

To execute a demonstrationDi the robot first accumulates
the updated list of current landmarks, Lnew. The robot then
performs a rigid registration between landmarks Ldemo ⊆ L
referenced in the demonstration Di and the set of land-
marks Lnew available at execution time. Once all landmarks
are registered, the robot computes the absolute end-effector
poses required to execute the demonstration based on the
current configuration of the landmarks. The arm joint posi-
tions required to achieve each end-effector pose are com-
puted using inverse kinematics (IK). If there is at least
one pose that has no IK solutions, the demonstration is
deemed unreachable in the current environment. Otherwise,
the robot reproduces the demonstration by moving through
these joint positions. After reaching each pose, the robot
changes the gripper state (open or close) if it is different
from the current gripper state.

As a concrete example, consider a simple action for pick-
ing up a cup and stacking it on another cup. This action in-
volves two landmarks corresponding to the two cups. The
demonstration would involve moving one arm near the first
cup, closing the gripper, lifting the cup, moving above the
second cup and opening the gripper. The poses for approach-
ing, grasping and lifting the first cup would be relative to the
first cup, while the poses for moving above and opening the
gripper would be relative to the second cup. This allows for
the action to generalize to different initial configurations of
the two cups, since the poses attached to the cups move to-
gether with the cups.

As illustrated by the example, a single demonstration can
generalize to novel scenarios (i.e. configurations of the land-
marks), as long as the end-effector poses remain within the
robot’s reach. The extent of generalization to novel scenar-
ios depends strongly on the poses in the demonstration that
are relative to landmarks. If the poses are far from the land-
mark, the range of possible landmark displacements will be
small. In contrast, if the poses are close to the landmark, the
landmark can move more before the poses get outside of the
robot’s reach.

Alexandrova et al. demonstrated that this simple action
representation and PbD framework allow programming a di-
verse set of manipulation actions that involve reconfiguring
everyday objects by picking them up and placing them or
through non-prehensile manipulation (e.g. pushing), with a
single hand or using both hands (Alexandrova et al. 2014).
Example actions include placing several objects in a box,
closing the lid of a box, unscrewing the lid of a bottle or ar-
ranging objects in a certain pattern. The actions used in the
evaluation of this paper are a subset of the benchmark used
in (Alexandrova et al. 2014).

Instance-based Action Learning
A single demonstration (i.e. an “instance”) has a limited
range of generalization. However, if one demonstration of an

action is unreachable in a given scenario, that does not nec-
essarily mean that the goal of the action cannot be accom-
plished in that scenario. There might be a different demon-
stration that accomplishes the same goal in a way that is
within the robot’s reach. For example, two different demon-
strations that involve approaching and grasping an object
(the landmark) from two different directions would be exe-
cutable in scenarios that involve different orientations of the
object. Our instance-based action learning approach aims
to have greater generalization by collecting a large set of
demonstrations that each allow generalization to a different
subspace of landmark configurations.

When the robot is requested to execute an action in a novel
scenario, it first finds the subset of instances in its dataset
that are within the robot’s reach given the landmark config-
urations. From this subset the robot selects the instance to
be executed based on a score function s(Di), which aims
to estimate the likelihood that the demonstration will suc-
ceed in achieving its goal. We discuss three alternative score
functions in the System section.

Active Action Learning with Crowdsourcing
Our approach involves getting the first demonstration for
an action, D0, from the local user, and then accumulating
the rest of the demonstrations, {Di : i = 1..Ni}, through
crowd-sourcing. To ensure that the demonstrations collected
from the crowd improves the action generalization, we em-
ploy an active learning approach. Active learning (Settles
2012) is a machine learning technique that involves re-
questing labels for particular unlabeled samples (i.e. making
queries), rather than passively receiving labels from the data
source. The core idea is to give control to the learner on the
data that it receives, instead of making it a passive agent in
the learning process. We apply this idea to the process of
collecting demonstrations from the crowd, where the robot
actively selects the scenarios in which the crowd workers
will provide demonstrations.

Query scenarios, denoted byLqueryk , are selected based on
the seed demonstration D0. The goal is to improve general-
ization of the action by requesting demonstrations in scenar-
ios whereD0 is unreachable. We first uniformly sample pos-
sible landmark configurations from a prior distribution based
on the robot’s reachable space. Note that every Lqueryk in-
volves the same landmarks as Ldemo which were referenced
in D0. We discard scenarios in which:

• any two landmarks overlap (unfeasible scenario);

• all poses in D0 are reachable, i.e. the seed does not need
fixing; or

• none of the poses in D0 are reachable, i.e. the seed is un-
likely to be fixable.

We continue sampling until we reach a desired number of
scenarios in which D0 has varying number of unreachable
poses. We define the difficulty of a scenario as the number
of poses in the seed demonstration that are unreachable in
that scenario. We sort the sampled query candidates in terms
of difficulty and then make queries to the crowd for a subset
that is balanced in terms of difficulty. The size of this subset



is assumed to be determined by a fixed budget in terms of
number of demonstrations. Hence, we try to elicit demon-
strations for a uniform set of easy-to-difficult scenarios.

For each selected query scenario, we collect demonstra-
tions from the crowd as follows. The crowd worker is pre-
sented with a visualization of the seed in the query sce-
nario, where the unreachable poses are marked. The worker
provides a demonstration by manipulating the unreachable
poses until they are reachable. The number of unreach-
able poses of the seed corresponds to the minimum num-
ber of end-effector poses that must be modified to make the
demonstration executable in a given scenario. Nonetheless,
the worker may chose to modify other poses to make sure
that the modified demonstration still achieves the same goal
as the seed.

System
Next we describe the particular implementation of our ap-
proach presented in the previous section.

Platform
Our implementation builds upon Alexandrova et al.’s system
(Alexandrova et al. 2014). We use the PR2 (Personal Robot
2) robot platform—a mobile manipulator with two 7-DoF
arms and 1-DoF under-actuated grippers (Fig. 1). Our soft-
ware is developed within the ROS (Robot Operating System)
framework and is based on Alexandrova et al.’s open-source
package2. The landmarks for actions are table-top objects
detected through the Kinect sensor mounted on PR2’s pan-
tilt head. Landmarks are described and matched based on the
bounding box of the segmented point cloud corresponding to
each object.

Domain
As mentioned, we focus on actions that involve manipula-
tion of objects on a tabletop. For our evaluation we consider
three distinct actions described in the following (Fig. 2).

1. Action 1 (pick-up-and-place): The robot picks up a foam
object by a ridge on its top and moves it to a specific lo-
cation on the table. The initial configuration of the object
can be anywhere on the table.

2. Action 2 (constrained pick-up-and-place) The robot props
up a plastic plate with one gripper and grasps the elevated
side with the other gripper. It then moves the plate to a
specified location on the table. The plate can be initially
placed anywhere on the table.

3. Action 3 (multi-object pick-up-and-place): The robot
picks up two smaller objects (a plastic toy and small card-
board box) and places them into a larger cardboard box.
All three objects can start anywhere on the table.
We consider the three actions to be increasingly challeng-

ing as they have an increasing number of poses that are rel-
ative to objects. Action 1 involves poses of one gripper rel-
ative to one object; Action 2 involves poses of both grippers
relative to an object; and Action 3 involves poses of one grip-
per relative to three distinct objects.

2http://ros.org/wiki/pr2_pbd

Score Functions
We propose three score functions to rank collected demon-
strations in terms of how likely they are to succeed in a given
scenario. The first score function so(Di) is a direct estimate
provided by the crowd worker, of how likely their demon-
stration is to succeed. The intuition is that the crowd worker
who provides the demonstration will have a sense of what
impact their fixes will have on the success of the demon-
stration. The second score function sd(Di) is based on a
weighted distance between the demonstration and the seed.
The distance for each individual pose is weighted by its dis-
tance to the landmark that it is relative to. Intuitively, this
score function penalizes all changes made to the seed, and
it further panelizes changes made to poses that are closer
to the landmark. This is done because poses that are close
to the landmark are likely to involve contact with an object
and modifying them is more risky. The last score function
sd(Dc) is measure of compactness of the provided demon-
stration; it is a measure of how close the relative poses are to
their respective reference frames. The intuition for this score
function is that compact actions are more robust to changes
in the landmark configurations.

The three score functions can be expressed as follows,
where θfi,j corresponds to the jth end-effector configuration
of the ith demonstration, Di, in the f reference frame.

so (Di) = conf (Di) (1)

sd (Di) = 1/{
∑Nj

j=1

|θf0,j−θ
f
i,j |

|θf0,j |
} (2)

sc (Di) = 1/{
∑K
j=1 |θ

f
i,j |, f 6= `0} (3)

Graphical User Interface
Crowd workers use a graphical user interface (GUI) to pro-
vide demonstrations (Fig. 3). This involves a 3D virtual en-
vironment in which the seed demonstration is visualized in
the selected scenario. Key features of this interface are de-
scribed in the following.

• 3D navigation: The worker can change their view in the
3D environment (move, pan, tilt, or zoom) using a cursor.

• Reachable poses: Poses that are reachable are colored
along two different color spectrums to show the progres-
sion of time: the right gripper poses are colored from yel-
low (first) to red (last), and the left gripper poses are col-
ored from light blue (first) to dark blue (last).

• Unreachable poses: Poses that are out of reach of the
robot are colored gray.

• Pose labels: Each pose has a label of same color, indicat-
ing its index (j) in the demonstration. Pose labels always
orient to face the viewer, and fan out in eight directions to
increase visibility in regions where there are several poses
clustered.

• Selecting poses: A pose can be selected for manipula-
tion by clicking on either the pose or its label. When the
mouse hovers over either, it becomes highlighted in white
to show that it is selectable.
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Figure 2: The three actions considered in our evaluation, shown with snapshots from a video of their execution as well as their
visualization in our GUI.
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Figure 3: The GUI used by crowd workers to provide demonstrations. The left panel visualizes the seed demonstration in the
chosen scenario and allows editing its poses to fix unreachable ones. The right panel manages the crowd worker’s progress.

• Manipulating poses: Once a pose is selected, 6-DoF con-
trols appear around the pose, allowing the user to either
move (arrows) or rotate (rings) in the x, y, or z (red, green,
blue) directions independently.

• Objects: Objects (landmarks) are displayed as semi-
transparent green boxes that indicate their bounding box.

• Guiding lines: A thin gray line connects consecutive
poses. A thick green line connects a relative pose to the
object it is relative to.

• Surface: The table is represented by a thin dark gray sur-
face on which all objects are resting.
In addition to the interactive visualization, the GUI has

a panel that allows crowd workers to manage the multiple
demonstrations they provide (Fig 3 (b)). This panel involves
three groups of five gray buttons. Each group represents one
of the three actions, and each button represents one of five
scenarios selected for this action. Clicking on a scenario but-
ton selects that scenario and loads the objects and poses into
the visualization panel and makes the corresponding button
darker. Scenarios in which all poses are reachable have a
green check mark on their corresponding button. Brief in-
structions are provided at the top of the panel. This involves
the number of currently unreachable poses in the currently
selected scenario (in red if non-zero), as well as a reminder
that the actions’ success cannot be checked automatically.

Evaluation
Next we describe the evaluation of our approach through a
user study involving locally-recruited crowd workers using

the system implementation described in the previous sec-
tion. The seed demonstrations used in our evaluation were
provided by one of the authors. Successful executions of
each action using these seeds were video recorded3.

Setup and Procedure
We recruited participants through undergraduate and gradu-
ate mailing lists in the computer science and engineering de-
partment of our university. Participants signed up for a one-
hour block, and were told they would be compensated with
a snack bar upon completion of the task. The user study was
conducted in a lab, on a desktop computer running Ubuntu
with a 17” monitor and standard mouse and keyboard.

When participants arrived, the experimenter read through
a script introducing them to the robot, the high-level goal of
the project, and the task at hand. As part of the script, we
showed them three videos: one describing the programming
by demonstration system, another demonstrating the func-
tionality of the GUI they would use during the study4, and
a final one showing the execution of the three actions (using
the seed demonstrations). All three videos were accessible
to the participants throughout the study so they could come
back to them as they were doing the task. We used videos
to ensure consistency of instructions provided to each par-
ticipant and to emulate a realistic crowdsourcing scenario in

3Video showing the three execution of actions:
http://youtu.be/C_twPBkZ11U

4Video describing the elements of the GUI:
http://youtu.be/DhZgx2wl26Q



which the crowd workers would need to be instructed re-
motely through a browser interface.

We assumed a fixed budget of 15 total demonstrations for
each crowd worker. Hence, each participant was asked to
provide five demonstrations for each action. The scenarios
in which the participants provide the demonstrations (i.e. fix
the seed demonstration) were selected in advance, as our
sampling-based active learning approach cannot be done in
interactive time. These scenarios were chosen to have vary-
ing number of unreachable poses, hence ranging in their dif-
ficulty to fix. Participants were told that they could move
on from a scenario, if they believed that it was not possible
to fix it, or if they became frustrated. We also asked them
to provide an estimate of how likely the demonstration they
provided was to succeed in achieving the goal of the action
(in percentages). This was used directly as one of our score
functions (so).

Once the participant completed the instructions, they
started working on providing demonstrations in all scenar-
ios. Though most finished within the hour, we did not give a
time limit. When finished with the task, we asked each par-
ticipant to complete a questionnaire.

Metrics
We measure the effectiveness of the demonstrations pro-
vided by crowd workers on distinct test scenarios with two
metrics described in the following.

Reachability. The first metric measures the reachability
of crowd demonstrations in novel test scenarios. We sam-
ple 100 new test scenarios for each action using the same
sampling approach as the active query scenario selection.
Each test scenario has a number of poses that are unreach-
able for the seed demonstration. This number varies between
1-3 for Action 1, and between 1-5 for Action 2 and Action
3. The generalization of a crowd demonstration in terms of
reachability is measured by the portion of the test set in
which it is reachable. Note that, the generalization of the
seed demonstration according to this measure is 0% because
of the way the test set is sampled. The collective generaliza-
tion of demonstrations provided by the crowd is the fraction
of test scenarios in which at least one reachable demonstra-
tion exists.

Success. The existence of a reachable demonstration does
not guarantee successful execution of the action. The par-
ticular demonstration selected based on the score function
needs to be actually tested on the physical robot to assess
its success. We do this for all three actions in 10 different
test scenarios. These scenarios were selected to provide a
balance in terms of their difficulty. For Action 1, we chose
5 tests with 1 unreachable pose, 3 tests with 2 unreachable
poses, and 2 tests with 3 unreachable poses. For Actions 2
and Action 3, we chose 2 scenarios each with 1-5 unreach-
able poses for the seed demonstration.

We used the score functions described earlier to select
demonstrations from the full crowd dataset in each scenario.
Ties in the score function were broken randomly. For Action
1 only, we also measured the success of top five demonstra-
tions based on each score function. Queried scenarios were

recreated in the physical world by manually aligning point
clouds of objects with the visualization of the query scenario
in real-time. An execution was considered successful if it
achieved the goal of the action; that is, if all involved ob-
jects ended up in the desired configuration.

Usability. In addition to the objective measures of crowd
performance, we obtain the participants’ subjective assess-
ment of the system through our questionnaire. This contains
the NASA TLX questionnaire, a rating of the difficulty and
success in fixing each action, and free-form text boxes to
provide an explanation of how they ensured the action would
be successful and suggestions for improving the system.

Findings
We recruited 31 participants (20 males, 10 females, 1 chose
not to disclose). As each participant provided 15 demonstra-
tions (5 for each action), our combined data set consisted of
465 demonstrations (155 for each action). In the following
we present findings based on the data collected from these
participants.

Number of crowd demonstrations needed. Fig. 4 shows
the portion of test scenarios in which at least one demon-
stration provided by the crowd is reachable, i.e. the robot
will be able to execute the action in that test scenario. For
all three actions, nearly all test scenarios with one unreach-
able pose is made reachable with around 40 demonstrations
from the crowd. The same is true for test scenarios with two
unreachable poses for Action 1. As the number of unreach-
able poses in the test scenario increases to three and beyond,
more demonstrations are needed from the crowd to achieve
the same generalization. These numbers illustrate the need
for crowd-scale data for generalization over diverse test sets.

Difficulty of test scenarios. Fig. 4 shows that as the test
scenarios become more difficult, they require more and more
demonstrations to reach a certain level of generalization in
terms of reachability. Fig. 5 (a) shows the portion test sce-
narios that are made reachable by the full crowd data, which
demonstrates that the crowd collectively achieves less gen-
eralization for more difficult test scenarios. Fig. 5 (b) shows
the portion of crowd demonstrations that are reachable in a
test scenario, averaged over all test scenarios, which sim-
ilarly demonstrates that a smaller portion of the crowd is
able to provide effective demonstrations for more difficult
scenarios.

Fig. 9 shows how the difficulty of a scenario, influenced
the score so that the crowd gave to their demonstration in
that scenario. We observe that a scenario with 1 unreach-
able pose is most likely to lead to a demonstration that the
crowd gives a 90-100% score. As the number of unreachable
poses increase, the score given by the worker decreases. This
shows that the workers’ perception of how well they were
able to fix the seed demonstration in a given scenario, was
consistent with our observation about the difficulty of the
scenario.

Difficulty of actions. The increasing difficulty of the ac-
tions (Action 1 < Action 2 < Action 3) is reflected in the
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Figure 4: Generalization of reachability as increasing number of crowd demonstrations are provided. The y-axes show the
portion of test scenarios in which at least one crowd demonstration is reachable. The test scenarios are grouped in terms of
difficulty (number of poses that are unreachable for the original seed) and each group is represented with a separate line. The
x-axes show the increasing number of demonstrations sampled randomly from the crowd demonstrations collected in our user
study. Error bars indicate standard deviation over 100 runs of randomly sampling demonstrations.

number of demonstrations needed to achieve a certain gen-
eralization. For instance, in Fig. 4 the slope of each curve
for Action 2 is higher than ones for Action 3, in correspond-
ing scenario-difficulty groups. Fig. 5(a) shows the portion
of tests that are reachable with at least one demonstration,
when the full crowd data is used. We see that with the full
crowd data, 80% of tests in the most difficult scenario (5 un-
reachable poses of seed) can be fixed for Action 2; whereas
this number is less than 40% for Action 3.

This is also supported by participants’ subjective ratings
of action difficulty in the questionnaire (Fig. 10). Paticipants
found Action 1 less challenging (M=2.06) compared to Ac-
tion 2 (M=3.65) and Action 3 (M=3.45), and rated their fixes
for these this action as higher (M=4.13 versus M=2.94 and
M=3.03). However, the difference between Action 2 and Ac-
tion 3 in terms of the crowd generalization which was men-
tioned earlier, was not present in the subjective ratings. We
also did not observe a difference between these two actions
in terms of success (Fig. 6).

Choice of score functions. Fig. 6 shows the results of test-
ing success of the chosen demonstrations on the physical
robot. For Action 1, all three score functions had 9 suc-
cesses out of 10 from at least one demonstration in their top
5. When only the top scoring demonstration is considered,
sd (weighted proximity to seed demonstration) had the best
performance in Action 1. Although so (score directly given
by the crowd workers) seemed to have a worse performance,
the demonstrations selected by sd also had the highest so
score, but were not selected due to identical scores with
other demonstrations. In other words, although the crowd
correctly gave successful actions a high score, they also gave
an equally high score to unsuccessful actions, resulting in
the worse performance so for this action.

For the Action 2 and Action 3, so performed the best, suc-
ceeding in 7 out of 10 tests, and sd performed second-best,
succeeding in 6 of 10 tests. In all actions, the sc score func-
tion (compactness) was least effective at picking demonstra-
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Figure 5: (Left) Portion of 100 test scenarios made reach-
able by at least one demonstration in the full crowd data.
(Right) Likelihood that a crowd demonstration makes a test
scenario reachable (averaged across 100 tests; error bars rep-
resent standard deviation).

tions would yield success on the real robot. Overall, the re-
sults suggest that so is the best choice as a score function for
selecting the demonstration to be executed in a novel sce-
nario and sd can be used to break a tie in so.

Tied so scores were common, because participants of-
ten estimated the likelihood of success of their demonstra-
tions either as 100% or 0%. They used the range in between
less frequently. Fig. 9 shows the distribution of so scores
given by the participants. We observe a high density of 100%
scores and little in the 10-90 range. This suggests that a more
coarse-grained scoring by crowd workers would be more ap-
propriate.

Failures in the success tests were often due to one of the
following reasons: (i) the grasping pose was too far away for
the gripper to grasp the object, (ii) the grasping pose was in
the middle of the object, causing the gripper to collied with
the object rather than pick it up, or (iii) the gripper grasped
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Figure 6: The results of using three different score functions
to test crowd demonstrations on a sampled test set on the
physical robot.

the object, but the grip was too weak, and the object fell
during movement.

Types of fixes made by crowd workers. During the suc-
cess tests, we observed that the successful fixes made by the
crowd fell into one or more of the following categories.

• Changing pre-grasp or pre-drop poses within the robot’s
reachability space without changing the grasp pose.

• Changing the grasp pose according to the object geometry
(moving along an axis or rotating along an axis).

• Changing the approach direction to an object (e.g. grasp-
ing from the side instead of the top).

We saw that some of these fixes were also described by the
participants when asked to comment on how they made sure
the success of the action would be maintained. Two quotes
from the participants are as follows.

“I tried to identify [parts of] the actions that are most im-
portant: the ones that actually pick up the object, and the
letting go. The ones in between are not as important in my
thinking, thus they can be a little bit off, unless they are in
danger of knocking over things.” (Participant 31)

“I tried to make small changes whenever possible. I tried
to think hard about what was actually going on and avoid
making changes that I felt were ‘riskier’, in particular, I was
more careful with poses that took place *immediately be-
fore* and *during* picking up an object. Poses immediately
following picking up an object (like lifting it off the table) I
figured were less important.” (Participant 23)

Time spent by crowd workers. We observed a learning
effect in the crowd’s time spent providing demonstrations as
they progressed through the scenarios. Fig. 8 illustrates two
types of crowd workers. Ones shown on the top row gener-
ally improved over the course of the task. Ones shown on the
bottom row had a less marked improvement over time and

50 5535 4010 20 25

Instructions Action 2Action 1 Action 3
5 15 300 45 60 65

Figure 7: The time users spent fixing each action, in min-
utes. The box widths indicate average time, and bars are one
standard deviation. The time for instructions was recorded
only in some instances, so is an estimate.
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Figure 8: Time spent fixing each unreachable marker for a
selected subset of crowd workers. (Top) Workers who gener-
ally improved over time. (Bottom) workers who took longer
after switching to new actions (dashed vertical line) or on
the hardest scenarios (dotted vertical line).

their improvement seemed to be marred by hiccups where a
worker spent greater time on certain scenarios. We observe
that these spikes often occur when switching from one action
to another or when working on the most difficult scenario for
an action. An additional factor contributing to these spikes
might be that participants re-watched the video of an action
when they switched to it.

Fig. 7 shows the distribution of the total time spent by
participants. They spent about 15 minutes listening to the
verbal instructions or watching training videos before begin-
ning the task. After the instructions, the task took an average
of 48 additional minutes to complete. This might be too high
for scalable crowdsourcing.

Usability of the interface. The summary of the responses
given to our questionnaire is presented in Fig. 10. We note
from the NASA TLX survey that moderate mental demand
(M=3.23), performance (M=3.16), and effort (M=3.42), as
well as lower frustration (M=2.61) scores, indicate that these
aspects of the task are suitable for a wider audience, such as
a true crowd.

In the free-text portion of the survey, we asked crowd
workers what difficulties they had with the interface or how
they would improve it. The following are the most common
responses. 19 participants complained that the markers for
end-effector poses were bunched together, making it hard
to tell what is going on. 7 participants wanted a feature to
toggle visibility of some markers (e.g. see only unreachable
markers, or see only three at a time). 5 participants com-
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Figure 9: The number of unreachable poses of the seed
demonstration for a scenario versus the crowd workers’ esti-
mate of how likely their demonstration is to succeed in that
scenario.

Measure avg std'dev
NASA$TLX

Mental*Demand 3.23 1.02
Performance 3.16 0.86
Effort 3.42 1.03
Furstration 2.61 1.15

How$challenging$was$it$to$fix$each$action?
1:*Pick*and*Place 2.06 0.51
2:*Constrained*Pick*and*Place 3.65 0.91
3:*MultiBObject*Pick*and*Place 3.45 0.93

How$well$do$you$think$you$fixed$each$action?
1:*Pick*and*Place 4.13 0.72
2:*Constrained*Pick*and*Place 2.94 1.03
3:*MultiBObject*Pick*and*Place 3.03 0.95

Other
How*well*do*visualizations 3.65 0.80
represent*actions?

Figure 10: Summary of questionnaire responses provided by
crowd workers after they completed the task. All questions
are on a 5-point Likert scale.

plained that it is hard to tell the geometry of the objects be-
cause they are just shown as bounding boxes, making the
judgement of gripper contacts difficult. 5 participants com-
plained that it is hard to understand why a marker is unreach-
able. 5 participants wanted a separate list of steps so I can se-
lect a certain marker with certainty. Implementing features
may alleviate some of the common problems participants ex-
perienced, lower their frustration, and improve the quality of
the demonstrations they provide.

Implications. We re-iterate our findings in the form of rec-
ommendations for a deployment of our system. First, gen-
eralizing object manipulation actions to diverse test sets re-
quires a large number of demonstrations in the order of 100s.
Second, more demonstrations should be collected if general-
izing to difficult scenarios is important or the action itself is
more challenging (i.e. it involves more landmarks). Third,
the likelihood of a demonstration succeeding is best esti-
mated by the crowd worker who provides the demonstra-
tion; however, when the worker cannot distinguish between
two demonstrations, similarity to the seed can be used as a

tie braker. Finally, the crowd worker’s estimate of the likeli-
hood of success is course (not fine grained) so this informa-
tion should be elicited with an ordinal variable (e.g. success-
maybe-fail) rather than intervals to reduce cognitive load.

Limitations

Our current approach and implementation have several lim-
itations. A critical one is that the success of crowd demon-
strations cannot be tested automatically. As a result we had
to use heuristic score functions, with no guarantees, to pre-
dict the success of crowd demonstrations. A more robust
technique to address this limitation would be to test the
crowd demonstrations in a simulated environment. However,
doing so requires accurate physics models for any object
used in the demonstrations, as well as precise physics simu-
lation behavior (for example, of the friction of the grippers
against the object).

Second, we assumed a fixed budget of crowd queries in
a batch mode. An incremental query approach can be more
efficient by choosing each query based on all demonstra-
tions provided by the crowd so far. The robot can then avoid
queries for instances that were solved previously, as well
as stop making queries once it arrives at some performance
threshold.

Third, our user study involved local crowd workers in
a relatively controlled setting, and we anticipate that addi-
tional challenges will arise in real crowdsourcing scenarios.

Conclusion

In this paper, we propose a robot Programming by Demon-
stration framework in which a local end-user provides an
initial seed demonstration, and then the robot searches for
scenarios in which the seed will not work and requests the
crowd to fix the demonstration for these scenarios. This
approach of collecting fixes from the crowd, rather than
demonstrations from scratch has two advantages. First, it
significantly reduces the effort needed to provide a new
demonstration; rather than adding a large number of poses,
defining the relativeness to objects and editing each pose
one by one, the crowd worker only edits a subset of existing
poses. Second, this ensures that the demonstration collected
from the crowd will resemble the seed demonstration pro-
vided by the local user. Our paper contributes a simple action
representation, an active learning method for instance-based
action learning and a system implementation with interac-
tive action visualizations that make the proposed approach
possible. We also contribute an empirical evaluation that in-
forms a full implementation of the system that will be de-
ployed on the web.
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