
Robot Programming by Demonstration with
Situated Spatial Language Understanding

Maxwell Forbes, Rajesh P. N. Rao, Luke Zettlemoyer and Maya Cakmak

Abstract— Robot Programming by Demonstration (PbD) al-
lows users to program a robot by demonstrating the desired
behavior. Providing these demonstrations typically involves
moving the robot through a sequence of states, often by
physically manipulating it. This requires users to be co-located
with the robot and have the physical ability to manipulate
it. In this paper, we present a natural language based inter-
face for PbD that removes these requirements and enables
hands-free programming. We focus on programming object
manipulation actions—our key insight is that such actions can
be decomposed into known types of manipulator movements
that are naturally described using spatial language; e.g., object
reference expressions and prepositions. Our method takes a
natural language command and the current world state to infer
the intended movement command and its parametrization. We
implement this method on a two-armed mobile manipulator and
demonstrate the different types of manipulation actions that can
be programmed with it. We compare it to a kinesthetic PbD
interface and we demonstrate our method’s ability to deal with
incomplete language.

I. INTRODUCTION

General-purpose robots that can manipulate everyday ob-
ject could take on many useful tasks in human environments.
However, programming such robots to robustly function
in every possible environment, with every possible user is
extremely challenging. Instead, our research seeks to develop
robots that can be programmed by their end-users to function
in their particular environment.

Programming by Demonstration (PbD) [5], [3] is an
intuitive method that enables users to program new ca-
pabilities on a robot simply by demonstrating the desired
behavior. Kinesthetic teaching (i.e., physically moving the
robot through desired states) [11], [12], [1], [8] allows
users to directly demonstrate desired arm configurations and
motions at a fine grained level and is often the most efficient
interface for PbD. However, it requires physical effort from
the user and it is not accessible to persons with certain
motor impairments. Furthermore, it requires the user to be
co-located with the robot. In this paper, we present a natural
language interface for programming a robot to perform
manipulation tasks purely through verbal commands. We
exploit the fact that task-oriented motion is often relative
to landmarks in the environment and that it can be described
with spatial language (e.g., object reference expressions and
prepositions). We implement a set of robust parametrized
motion procedures on a PR2 mobile manipulator and we
present a situated language understanding model that takes a
natural language utterance and infers the intended procedure

The authors are with the Computer Science and Engineering Department,
University of Washington, Seattle, WA 98195, USA.

and its parameter instantiation. We demonstrate that our
method allows programming different manipulation tasks,
even with ambiguous language and is on par with kinesthetic
programming in terms of efficiency.

II. RELATED WORK

Natural language interfaces to robots have seen several
recent developments. Tellex et al. used syntactic parsing
to construct a graphical model that grounds language into
actions executed on a robotic forklift (e.g., pickup, move,
place). Their approach involves learning from a corpus
of data [17]. Jia et al. developed a tabletop manipulation
system that takes natural language commands as input and
uses visual adjectives to distinguish between objects. They
demonstrate their approach with the pick up command [10].
Misra et al. developed a system that learns how to ground
language instructions in actions from a corpus of pairs of
natural language and virtual task demonstrations [15].

In the context of programming by instruction Mohan et al.
developed an explanation-based task learning approach. They
utilize domain knowledge along with situated instructions
to teach a robot novel hierarchical tasks. The programming
is interactive, but it is conducted in advance of execution
[16]. Our system executes actions incrementally as they are
programmed. Brick et al. proposed a model of incremental
language processing as a foundation for natural language
interactions in human-robot interaction [6].

Recent work in natural language processing has explored
semantic parsing as an interface between language and
robotic commands, as well as a tool for generating and un-
derstanding object referring expressions. Artzi et al. show a
system that uses semantic parsing to ground natural language
text into lambda calculus expressions that fully specify the
task to be executed by the robot. Their approach was only
tested virtually and in the navigation domain, whereas our
uses a much richer set of actions on a robot [4]. Matuszek
et al. also use semantic parsing to recover meaning from
language. They address the language grounding problem
with a joint language and perception model that attempts
to generate ground object referring expressions to locations
in an image [14]. FitzGerald et al. utilize a semantic parser
to generate referring expressions for objects using a more
effective inference technique for learning than in Matuszek’s
work. They generate a lambda-calculus description of the
predicted properties of the objects in an image [9].

T

(a) “move above T” (b) “move away from T”

T

(c) “move near O”

O

(d) “move upwards”

O

Fig. 1. Illustration of four types of movements: (a) relative destination,
(b) relative direction, (c) absolute destination, and (d) absolute direction.

III. APPROACH

This paper demonstrates that it is possible to program
robotic manipulation capabilities using natural language ut-
terances. This section describes our approach, by first defin-
ing the space of possible commands the robot can execute
(Sec. III-A and III-B) and a generative probabilistic model
for providing natural language commands to the robot in a
situated context (Sec. III-C). We then describe in more detail
the individual parts of this model, including distributions
for a prior model of what commands are most likely in
different situations (Sec III-E) and a generative model for
producing contextually appropriate command descriptions in
natural language (Sec. III-F). Finally, we describe how we
do efficient inference to understand user utterances during
actual interactions (Sec III-H).

A. Robot motion commands

Our work builds on Alexandrova et al.’s PbD framework
in which actions are represented as a sparse sequence of end-
effector poses relative to landmarks in the environment [2].
Alexandrova et al.’s implementation involves kinesthetically
moving the robot’s arms to the desired end-effector config-
urations and saving poses through verbal commands. In this
paper, we replace the physical interaction with verbal com-
mands. Our key insight is that such task-oriented motion can
be decomposed into known types of manipulator movements
that are naturally described using spatial language.

We identify two dimensions in which manipulator motions
can be categorized.

• Absolute versus relative: Most tasks-oriented actions
involve moving relative to objects that are part of the
action (i.e., they are relative). However, some motions
are independent from the objects in the environment
(i.e., they are absolute); instead they are relative to the
robot’s body or to absolute entities (e.g., gravity).

• Destination versus direction: While some motions are
identified with a target destination (with no constraints
on how it is reached), others are identified as directions
that correspond to differential movements.

These result in four types of movements illustrated in
Fig. 1. Destinations are specified with prepositions of place
(above, near, on, to, etc.), whereas directions are speci-
fied with prepositions of direction (towards, away from,
up, down, etc.). Relative movements require referencing
landmarks in the environment that are perceivable to the
robot, whereas absolute movements require known places or
directions that can be referenced with a common name.

In this work, the four types of movements are implemented
as separate parametrized procedures that are candidates that
can be commanded with natural language. All distances for

relative and absolute movements are fixed; they are chosen
experimentally to balance speed of execution with accuracy
of movements. We assume a robot with two arms, hence each
procedure has an additional arm-side parameter.

• p1: move(abs-dest, arm-side)
• p2: move(rel-dest, object, arm-side)
• p3: move(abs-dir, arm-side)
• p4: move(rel-dir, object, arm-side)

The destination and direction parameters of these procedures
are chosen from a finite set of relative positions that are
relevant for the particular type of motion. A relative position
is a set of 6-dimensional end-effector poses in the given coor-
dinate frame. For instance, we can model the meaning of the
preposition above with a relative position that corresponds to
end-effector poses sampled around a pose that is higher than
the landmark object on the vertical axis and at the center of
the object on the table plane. The rotation of the end effector
is chosen to make the gripper opening face the landmark
object. The object parameter is chosen from the set of
available objects, which differs based on the situation.

Given sufficient granularity all movements could be de-
composed into a long sequence absolute directional move-
ments. Such movements are straightforward to implement
on a robot with simple cartesian control of the end-effector.
However, this would be an inefficient way to cover the
space of movements that can be demonstrated. Instead, we
expect relative destination movements to cover most spatial
translations and directional movements to act as stitching
between these larger movements.

B. Additional commands

In addition to commands that directly control the robot’s
end-effector motions, we make several additional procedures
available for users to command. This includes pickup and
place procedures that are the most common object interac-
tions and have robust implementations on most manipulators
for certain objects. We have two commands, point and
lookat, that allow testing and resolving object references
without interacting with them. The next three commands
give direct control on particular joints of the robot: rotate
moves the robot’s wrist joint in clockwise or counter-
clockwise direction; open and close move the gripper to
either extreme. The final command, record, instructs the
robot to look at the table and update its representation of the
objects in the world.

• p5: pickup(object, arm-side)
• p6: place(abs-dest, arm side)
• p7: place(rel-dest, object, arm-side)
• p8: point(object, arm-side)
• p9: lookat(object)
• p10: rotate(rot-dir, arm-side)
• p11: open(arm-side)
• p12: close(arm-side)
• p13: record()
Finally, we have four additional commands that are pro-

vided for the user to navigate the system itself:

• p14: create-new-action()
• p15: switch-to-action(number)
• p16: execute()
• p17: stop()

C. A Model for Situated Language Understanding

The core computational problem in our approach is the
inference of the intended procedure and its parametrization,
given the input command and the current world state. In for-
mulating and solving this problem, we exploit the fact there
is a finite number of possible procedure parametrizations in
a given state. We refer to a fully instantiated procedure as a
command. We represent the distribution over these possible
procedure parametrizations as a discrete random variable
C. Similarly we represent the world state with the random
variable S as a distribution over discrete states that captures
the currently perceived objects in the environment and the
history of commands (last referred object, last moved arm).
Finally, we define L a random variable representing the users
natural language utterance.

Our goal is to compute the joint distribution P (C, S, L)
that models the relationships between these quantities. We
factor the distribution with the chain rule, producing:

P (C, S, L) = P (L|C, S)P (C|S)P (S)

This exact decomposition allows us to define the full
model in convienent parts. For example, it is relatively easy
to specify a basic model for how the state S influences
the probability distribution over commands C, independent
of the language. This happens in many ways, for example
some of the commands are less likely because they involve
relative movements that are not reachable due to the robot’s
kinematic constraints, while some commands are more likely
given the recent command history.

Similarly, we can directly model P (L|C, S) to define
what the user would say, L, given the world S and the
actual command C. We assume a template-based generative
language model, where different templates associated with
each command and state allow for compact modeling of
situated phenomena, such as how the objects are references
and the fact that users will often reword what they say to
avoid sounding too repetitive.

D. Inference problem

To interact with users, we will ultimately need to find the
best command c∗ ∈ C, given an utterance L in a specific
world state S. More specifically, we need to find:

c∗ = argmax
C

P (C|S,L) (1)

= argmax
C

P (S)P (C|S)P (L|C, S)
P (S,L)

(2)

= argmax
C

P (C|S)P (L|C, S) (3)

The next two subsections give more details on how these
distributions are specified. Section III-H provides the details
of this computation, which is efficient in our domain and can
be done at interactive speed.

E. Situated command model

We implement the situated command mode P (C|S) as a
scoring function that starts with equal scores on all possible
commands and changes the scores of certain commands
based on predefined rules. First, all commands instantiated
with an object-preposition pair that is unreachable to the
robot is penalized. Commands with absolute directional
prepositions (e.g., moving the arm up) will also receive a
lower score if they push the robot outside its reachable space.
Similarly, the pickup command instantiated with objects that
are outside the robot’s pickup range are penalized.

Other rules for scoring commands take into account the
history of commands issued so far. The most recently re-
ferred object is considered most likely to be referred to next,
so the scores of commands that refer to other objects are
negatively penalized. Similarly, the last-used side of the robot
(right or left arm) is preferred over the other. Finally, the state
of the robot’s end-effectors are factored into additional rules.
For example, a close command receives a far lower score
if the gripper that it refers to is already closed.

We chose the scoring parameters experimentally based on
our desired emergent behavior of the system. While the exact
values are available in our released code, their magnitudes
are only important relative to each other. For example, the
combined score penalties incurred when referring to a novel
object with an unused arm are less than referring to an
unreachable object, which are all less than asking the robot
for an impossible movement (such as opening an open hand).

After all rules are applied, the final scores are normalized
to provide a probability distribution.

F. Language model

Each procedure introduced in Sec. III-A and Sec. III-B
has an associated template with a verb and zero or more
parameter clauses. All parameters in the specified proce-
dures have a finite number of options. Our model includes
several alternative phrases for each option. Hence, given
a fully instantiated command, language generation involves
choosing a phrase for each parameter option that occurred in
that instance. For most options this corresponds to randomly
choosing a phrase from a list. However for objects, the phrase
depends on the current context. These phrases are generated
with the referring expression generation method described
next.

G. Referring expression generation

Our referring expression have a fixed set of object prop-
erties. When the robot scans its environment, it perceives
objects and computes a descriptor for each object. This
descriptor involves continuous features such color, size and
location.

Next, we rank all objects in the environment in terms of
each feature of the descriptor. Each object that gets ranked
at the top or bottom with a value surpassing the next object
by a certain threshold is assigned a distinct property label.
These labels and the associated continuous features are:

1) “rightmost” and “leftmost” (x-position)

1
2

3

1:left-most object
2:farthest object
3:green object

1:leftmost object
2:nearest object
3:rightmost object
4:farthest object

1

2 3
1

2

3

1:biggest object
2:tallest object
3:-
4:farthest object

4 4

1

2

3

1:-
2:farthest object
3:tallest object
4:rightmost object

4

Fig. 2. Referring expressions generated by our language model for
different objects in different scenes.

2) “nearest” and “farthest” (y-position)
3) “tallest” and “shortest” (z-dimension)
4) “biggest” and “smallest” (volume)

Color features are converted to discrete values and each
object receives a color label with its value.

After all salient object labels are computed, each object
ends up with a discrete vector of these word options that
captures its distinguishing properties, which we can use
to produce our final set of plausible referring expressions.
We prioritize the distinct property labels as (1) location
(left/right-most, middle, and farthest-nearest), (2) then size
(biggest/smallest), (3) height (tallest/shortest), and (4) color.
We then pick the least possible number of adjectives required
to uniquely specify the particular object used in the command
instance.

H. Inference

To use the generative language model for inference we first
enumerate all possible sentences that can be produced by our
language model. Since each command refers to at most one
object there is a relatively small number of possible fully-
specified commands which makes this enumeration easy to
compute. The user’s natural language utterance is matched
against all generated sentences using a simple weighted bag-
of-words approach. Each sentence that has a word match with
the input utterance increases the score of the corresponding
command instance. Relative to nouns, verbs are weighted
more heavily when matching commands, whereas adjectives
are weighted more heavily when grounding objects with
referring expressions. The exact weights we used were
experimentally determined and are available in our code.
Once the scores for all commands are computed, they are
normalized to obtain a probability distribution. The final step
is to combine the language model with the situated command
model as per Eqn. 3. This returns the most likely command.

I. Implementation

1) Hardware: We implement our natural language based
PbD framework on a PR2 robot. PR2 is a mobile manipulator
with two 7 degree-of-freedom (DoF) arms, each with a 1-
DoF under-actuated gripper. For perception of objects we use
the Kinect sensor mounted on the PR2’s pan-tilt head. For
speech commands, we use a Shure wireless microphone with
a headset.

1
2

3

red object

farthest object

nearest object

rightmost object

1
2
3

1
2
3

1

2

3

blue object

tallest object

smallest object

biggest object

1
2
3

1
2
3

1

2

3

4

tallest object

red object

farthest object

shortest object

1
2
3
4

1
2
3
4

Fig. 3. Referring expression understanding in three different scenes. The
bars show the probability distribution over the detected objects in the scene
for the given object reference phrase.

2) Software: Our software is written within the ROS
(Robot Operating System) framework and is open-source.1

It is built as an extension to the open-source PR2 Program-
ming by Demonstration package [7]. We use PocketSphinx
[13] for speech recognition. Objects are segmented and
localized using the PR2 tabletop object detection stack. We
compute object descriptor attributes (dimensions and color)
for each detected segment. The different commands also
implemented using existing ROS packages such as table-
top object manipulation (pickup procedure) and MoveIt!
(move procedures).

IV. EVALUATION

Next we describe how we evaluated our approach and
present our findings from this evaluation. Although our
system supports speech as input, our evaluations were done
using text-based input. This allowed for easier repeatability
and did eliminate speech-recognition errors. All evaluations
were done by expert users of the system.

A. Referring expression generation and understanding

We start our evaluation by demonstrating the operation
of smaller components of the complete system. First we
investigate the generation and understanding of referring
expressions. We created several scenes with different con-
figurations of 2 to 4 objects, including ones later used
for programming manipulation actions (Sec. IV-C). In each
scene we used our language model to generate an expression
to refer to each object in the scene. Then we tested our
referring expression understanding technique by providing
several expressions that target different objects in the scene.

Fig. 2 shows sample test scenes and the generated ex-
pressions for each scene. These examples demonstrate that
our model chooses reasonable expressions and highlights its
preference towards location. When location is ambiguous,
the model is able to use other attributes such as color, size,
and height. When an expression generated by the model

1The robot-specific half of the code is available at https://github.
com/mbforbes/pr2_pbd/tree/hf, and the language-model half
of the code is available at https://github.com/mbforbes/
hfpbd-parser.

https://github.com/mbforbes/pr2_pbd/tree/hf
https://github.com/mbforbes/pr2_pbd/tree/hf
https://github.com/mbforbes/hfpbd-parser
https://github.com/mbforbes/hfpbd-parser

Fig. 4. Executions of the object relative destination move command
(p2) with different different prepositions (rel-pos), in response to the
command “more right arm <rel-pos> to the right-most object”

(i.e., the candidate expression with the highest weight) is
used as an input reference expression in the same scene,
our system is always correctly identifies the target object. In
most cases these objects are identifiable by more expressions.
Some examples are shown in Fig. 3, which presents sample
test scenes with the probability distribution over the different
objects in the scene for different input referring expressions.
Expressions that result in even distributions among candidate
objects, are indeed ambiguous for humans as well.

B. Object relative command understanding and execution

Next we verify understanding and execution of object
relative commands. For one of the of the scenes from Sec. IV-
A, we test all possible prepositions of the move procedure
that have an object parameter, instantiating it with one
target object in the scene. The robot’s final pose after
executing the move procedure with different prepositions is
shown in Fig. 4.

C. Action programming

Next we demonstrate the programming of five different
tasks using our system:

• Task 1: Stack two cups
• Task 2: Place two objects side-by-side
• Task 3: Place an object in a box
• Task 4: Pick up a large box with two arms
• Task 5: Push plate to the edge of table and pick up
The tasks involve various manipulation actions, that are

variants of the benchmark in [2]. The first three involve
picking up an object and placing it relative to another object.
The fourth is a two-armed non-prehensile pick-up. The final
one is a non-prehensile manipulation (push) followed by a
pick-up. Fig. 5 shows one complete programming sequence
for the task of pushing the plate to the edge of the table
and picking it up. Fully specified commands are used in
this programming sequence. The sequence demonstrates the
successful execution of various types of procedures.

D. Comparison with Kinesthetic Programming

We program two actions described in Sec. IV-C–Task 1
and Task 3–and time how long it takes to program each
in three conditions. The first condition is the presented
system, programmed using fully-specified language. That
is, for a command move(above, object-0, right-hand) we
use language “Move right hand above the leftmost object.”
The second condition is also the presented system, but
programmed using minimal language: we use the shortest
possible sentences to achieve the desired command. For the

0 15 30 45 60

T1

T3

seconds

0 100 200
seconds

0 25 50
number of words

T1
T2
T3
T4
T5

(a)

(b) (c)

Complete
Minimal

Complete
Minimal
Kinesthetic

Fig. 6. (a) Comparison of time taken to program two tasks using fully-
specified and minimal language and kinesthetic PbD. Comparison of (b)
time taken and (c) words used to program five tasks using fully-specified
and minimal language.

same command, we might use “above blue,” if move, and
right-hand could be inferred from context, and the object
could also be uniquely referred to by that property. The third
condition is the kinesthetic PbD system, where we program
the tasks by physically moving the robots arms to carry them
out.

The results are shown in Fig. 6(a). We can see that using
minimal language is considerably faster than fully-specified
language, and for Task 1, faster than kinesthetic PbD. For
Task 3, kinesthetic PbD is faster than both conditions of the
proposed system. The extra time taken in Task 3 for the
proposed system is due to difficulty in specifying the object
to pick up in a crowded environment. In kinesthetic PbD,
this trouble is lessened as one must merely move the robot’s
arm to the object without uniquely describing it.

E. Dealing with Incomplete Language

1) Quantitative results: One of the strengths of the pre-
sented system is its ability to handle incomplete language.
It does this by applying the score functions described in
Sec. III-E to incorporate context into the decision of which
command to select. When using the system, this manifests
as shorter programming times with more succinct utterances.

To test this, we program the actions from Sec. IV-C using
both fully and minimally-specified language. We measure
both the time taken to program the action as well as the
number of words used during programming. The results are
shown in Fig. 6(b-c). The time saved is roughly proportional
to the total time spent. In Tasks 1 and 2, about 10 seconds
are saved, whereas in Tasks 4 and 5, about 20 seconds are
saved. The results are even more significant for the number
of words used. In all tasks except Task 4, less than half of
the words are needed in the minimal-language case compared
to fully-specified language. Task 4 is exceptional in that it
involves mostly low-level movements of moving each hand
up in turn. Even still, the words used in Task 4 drops from
42 to 27, a savings of about 45%.

move right hand
above red object

move right hand
towards the right

move right hand
down

move right hand
towards the left

move right hand
up

move left hand to the
left of red object

move left hand towards
the red object

close left hand move left hand up

Fig. 5. Programming sequence for Task 5: used verbal commands and snapshots taken after the chosen procedure has been executed.

2) Qualitative results: Here are some key ways context
and our language model help disambiguate language in the
tasks shown to enable shorter utterances:

1) Context: The last-used arm is used if not specified
2) Context: The last-used object is used if not specified
3) Context: The gripper state (open, holding, or closed)

can influence between move, pickup, and place
commands.

4) Language model: If all of the parameters for a com-
mand are specified or inferred without specifying an
object, and there is only one object, that command
will be selected.

5) Language model: Certain parameters are only available
in a single command, so specifying an option for that
parameter automatically determines the command.

As an example, the utterance “up” can fully-specify
move(up, right-arm) because of points 1 and 5. An even
richer example is that the utterance “above” can fully-specify
move(above, object-0, left-arm) using points 1,3 and 5, and
either 2 or 4 depending on how many objects are in the scene.

F. Additional features
1) Interactivity: It can sometimes be difficult to be sure

that what one intends the robot to do is what the robot
will do. Getting this right is especially important in this
framework, where the only interface to the robot is natural
language. Due to this, we designed the set of procedures to
support interactive workflows that allow the user to verify the
robot’s intent before executing, without switching “modes”
into and out of programming.

Two such procedures are point and lookat. A possible
sequence of events might go as follows:

1) User: “Point to the biggest object.”
2) Robot: “Please clarify object.”
3) User: “Point to the tallest object.”
4) Robot points to an object.
5) User: “Pick it up.”
6) Robot picks up the object.
The previous scenario is also supported by context in two

ways. First, the user never specifies which arm the robot
should use. We assume that the user used one of the arms
previously (in 1-4), and optionally that the robot could only
reach the object with one arm (5-6). Second, the user refers
to the object as “it” in 5. This is automatically resolved to
the last-referred object, which happened in 3.

2) Dialog: An additional feature of the system presented
is the care taken to give helpful feedback to the user when
problems arise. This is manifested in four ways.

First, as touched on briefly in Sec. III-H, the robot provides
a specific clarification request when this is possible. This
happens after user input the system determines all proce-
dures that it deemed most likely (but couldn’t choose one
best from) come from the same command template in the
language model. In that case, the robot asks the user to clarify
one of the parameters that is in contention between the top
choices.

Second, the system gives specific error messages when it
selects a single command from user input but fails to execute
it. For example, if the command is move(above, object-
0, right-hand), and the robot cannot reach that location,
it will respond with a statement similar to “Cannot move
right had above the right most object.” This detailed response
is especially help when in the middle of executing a long
action; a message like “Error.” does not give the user a clue
as to what specifically went wrong.

Third, object-referring phrases are generated dynamically
and always as a part of feedback given to the user. Whether
it is part of an error message like in the previous point,
or during the robot’s normal narration of its execution, the
system will generate a referring expression for each object
that is involved in each command that is executed. This
means that if the objects change between executions, the
robot will still accurately describe what it is attempting to
do.

Finally, the robot tracks the phrases that were used to
program it. If a user uses the phrase “grab” instead of “pick
up” to issue a command, then for error messages, motion
feedback, and future executions, the robot will use “grab” as
well. This allows a user to use supported vocabulary that is
most natural to him or her, and the robot follows his or her
lead transparently, without enforcing language constraints.

V. LIMITATIONS

A. Detail of attributes

Our implementation extracts a relatively small number
of properties from objects. We do not attempt any object
classification, even shape recognition. We choose from only
three colors (red, green, or blue) for an object’s color
category. Especially in scenarios where there are multiple
types of objects, an objects type, such as whether it is a cup
or a box, is perhaps its salient attribute. Furthermore, there
is a vast body of work in computer vision to support such
efforts. Integrating more attributes of objects would greatly
improve the implementation of our framework.

B. Richness of referring expressions

We model only the properties of objects that have “ab-
solute saliency.” That is, if some but not all objects could
be described with a property, then no object receives that
property. Though this model simplifies referring expressions
in that most attributes are manifested as distinct properties,
it also precludes us from using other rich expressions.
For example, allowing non-distinct properties would enable
compound adjective expressions. It could be that an object
is not the “leftmost” object, nor is it the “farthest” object,
but it is the “farthest leftmost” object. Also, allowing non-
distinct properties could allow other sources of inference to
fully specify an object. If the user commands a pickup of a
red object and only one red object is within reach, it might
be reasonably to pick that one up. Currently, the robot will
instead ask the user to clarify to which object they were
referring.

C. Collision avoidance in movement

Frequently, the robot needs to move its arms around in a
tabletop environment that is populated with objects. Under
the current implementation, the robot does not take into
account the existence of objects when planning movement,
except for in the pickup procedure. This either leads to
collisions with objects, or with the user explicitly adding
semantically unnecessary steps (such as “move arm up”)
in order to avoid objects. Software is available for motion
planning with basic collision avoidance, so integrating this
feature as future work would be a cost of time.

D. Modeling the held object

As an extension of the previous limitation, the robot should
also model an object that it is holding. It must do this to avoid
colliding the object with other objects or the table while
moving, as collisions may happen even if the robot itself is
not touching any other surfaces. In addition, modeling the
help object is vital for accurate placement. Placing a small
object at a certain location requires a different end-effector
location than placing a large object. Similar to the previous
limitation, software is available that implements this feature,
so adding it to the system would be a question of time.

E. Sophistication of language model

The current language model is brittle from a linguistic per-
spective, as it relies on exactly matching a hand-selected set
of vocabulary. Other work exists that incorporates syntactic
[17] or even semantic parsing [4] in creating instructions.
Though our language model is intentionally simple to avoid
introducing errors, making use of a more sophisticated lan-
guage model would increase the flexibility of the system by
allowing less constrained input.

VI. CONCLUSION

We contribute a method for programming object manip-
ulation tasks using natural language commands. The key
insights exploited by our method are that (i) task-oriented
motion can be efficiently decomposed into a sequence of

motions procedures with different types and (ii) such motion
can often be described with spatial language, using object
reference expression and positional and directional preposi-
tions. Our method uses its perception of the current context,
as well as its historical context (e.g., last used command),
in conjunction with the input natural language command,
to infer the intended procedure and its parameters. The
context helps resolve referring expressions and ambiguities
in the input language. We present a full implementation of
our method on a PR2 robot, demonstrate its capabilities in
different tasks and scenarios, and compare it to a kinesthetic
teaching alternative.

REFERENCES

[1] B. Akgun, M. Cakmak, K. Jiang, and A.L. Thomaz. Keyframe-based
learning from demonstration. (In press) Journal of Social Robotics,
Special issue on Learning from Demonstration, 2012.

[2] S. Alexamdrova, M. Cakmak, K. Hsaio, and L. Takayama. Robot
programming by demonstration with interactive action visualizations.
In Robotics: Science and Systems (RSS), 2014.

[3] B. Argall, S. Chernova, M.M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[4] Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of
semantic parsers for mapping instructions to actions. TACL, 1:49–62,
2013.

[5] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot Program-
ming by Demonstration, chapter 59. Springer, December 2008.

[6] Timothy Brick and Matthias Scheutz. Incremental natural language
processing for hri. In Proceedings of the ACM/IEEE international
conference on Human-robot interaction, pages 263–270. ACM, 2007.

[7] PR2 Programming by Demonstration in ROS. http://ros.org/
wiki/pr2_pbd.

[8] M. Cakmak and L. Takayama. Teaching people how to teach robots:
The effect of instructional materials and dialog design. In Proceedings
of the International Conference on Human-Robot Interaction (HRI),
2014.

[9] Nicholas FitzGerald, Yoav Artzi, and Luke S Zettlemoyer. Learning
distributions over logical forms for referring expression generation. In
EMNLP, pages 1914–1925, 2013.

[10] Yunyi Jia, Ning Xi, Joyce Y. Chai, Yu Cheng, Rui Fang, and Lanbo
She. Perceptive feedback for natural language control of robotic
operations. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2014.

[11] Jens Kober and Jan R Peters. Policy search for motor primitives in
robotics. In Advances in neural information processing systems, pages
849–856, 2009.

[12] Petar Kormushev, Dragomir N Nenchev, Sylvain Calinon, and Dar-
win G Caldwell. Upper-body kinesthetic teaching of a free-standing
humanoid robot. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 3970–3975. IEEE, 2011.

[13] P. Lamere, P. Kwok, W. Walker, E. Gouvea, R. Singh, B. Raj, and
P. Wolf. Design of the cmu sphinx-4 decoder. In Proceedings of
the European Conference on Speech Communication and Technology
(EUROSPEECH), 2003.

[14] Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng
Bo, and Dieter Fox. A joint model of language and perception for
grounded attribute learning. arXiv preprint arXiv:1206.6423, 2012.

[15] DK Misra, J Sung, K Lee, and A Saxena. Tell me dave: Context-
sensitive grounding of natural language to mobile manipulation in-
structions. In Robotics: Science and Systems, RSS, 2014.

[16] Shiwali Mohn and John Laird. Learning goal-oriented hierarchical
tasks from situated interactive instruction. In Proceedings of the The
Twenty-eighth National Conference on Artificial Intelligence (AAAI),
2014.

[17] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter,
Ashis Gopal Banerjee, Seth J Teller, and Nicholas Roy. Understanding
natural language commands for robotic navigation and mobile manip-
ulation. In AAAI, 2011.

http://ros.org/wiki/pr2_pbd
http://ros.org/wiki/pr2_pbd

	INTRODUCTION
	RELATED WORK
	APPROACH
	Robot motion commands
	Additional commands
	A Model for Situated Language Understanding
	Inference problem
	Situated command model
	Language model
	Referring expression generation
	Inference
	Implementation
	Hardware
	Software

	EVALUATION
	Referring expression generation and understanding
	Object relative command understanding and execution
	Action programming
	Comparison with Kinesthetic Programming
	Dealing with Incomplete Language
	Quantitative results
	Qualitative results

	Additional features
	Interactivity
	Dialog

	LIMITATIONS
	Detail of attributes
	Richness of referring expressions
	Collision avoidance in movement
	Modeling the held object
	Sophistication of language model

	CONCLUSION
	References

