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Abstract—Handovers of objects are critical interactions that
frequently arise in physical collaborations. In such interactions,
humans naturally monitor the pace and workload of their
partners and adapt their handovers accordingly. In this pa-
per, we investigate how robots designed to engage in physical
collaborations may achieve similar adaptivity in performing
handovers. To that end, we collected and analyzed data from
human dyads performing a common household task—unloading
a dish rack—where receivers had different levels of task demands.
We identified two coordination strategies that enabled givers
to adapt to receivers’ task demands. We then formulated and
implemented these strategies on a robotic manipulator. The
implemented autonomous system was evaluated in a human-robot
interaction study against two baselines that use “proactive” and
“reactive” coordination methods. The results show a tradeoff
between team performance and user experience when human
receivers had greater task demands. In particular, the proactive
method provided the greatest levels of team performance but
offered the poorest user experience compared to the reactive
and adaptive methods. The reactive method, while improving
user experience over the proactive method, resulted in the
poorest team performance. Our adaptive method maintained
this improved user experience while offering an improved team
performance compared to the reactive method. Our findings offer
insights into the tradeoffs involved in the use of these methods
and inform the future design of handover interactions for robots.

I. INTRODUCTION

Many robotic technologies that are designed for domestic,
workplace, and clinical use will engage in physical activities
with people. Examples include a household robot that helps its
user unload groceries, a collaborative manufacturing robot that
hands a human worker parts for assembly, and a rehabilitation
robot that guides patients through physical exercises. Such
physical activities can be characterized as joint actions in
which parties coordinate their actions in space and time to
achieve a common goal [25]. To achieve seamless coordination,
parties monitor each other’s task actions and progress and adapt
their actions based on these observations [26]. Such awareness
and adaptivity are critical to team performance [26] and the
psychological consequences of the interaction [20].

Handovers, which involve the transfer of an object from a
giver to a receiver, are fundamental joint actions that enable
physical collaborations. Prior research has investigated how
various aspects of the robot’s presentation of objects, including
its use of differentiable motions [7], object affordances [9],
appropriate approach angles [34], and social cues [21], con-

Fig. 1: We studied human-human handovers (top) in a household scenario,
identified strategies that humans used for coordination, implemented them
on an robotic manipulator, and evaluated their effectiveness in supporting
coordination in human-robot handovers (bottom).

tribute to the success of human-robot handovers. How they
may adapt to user task demands to achieve temporally aligned
handovers remains unexplored. An awareness of user states,
particularly of the user’s current focus, progress in the task, and
availability, can enable robots to adaptively perform handovers,
better supporting team performance and user experience.

In this paper, we seek to better understand adaptation
strategies that enable humans to seamlessly coordinate their
actions and to explore how robots may leverage such strategies
to more successfully engage in physical interactions with their
users. We contextualized our investigation in a household
application scenario in which parties collaboratively unloaded
dishes from a drying rack (Figure 1, Top). We collected data
from pairs of human participants as they performed handover
actions under different task demands. The analysis of this data
resulted in a computational model of adaptive coordination that
was implemented on a robotic manipulator. We conducted
a human-robot interaction study in a similar collaborative
scenario (Figure 1, Bottom) to evaluate the effectiveness of
the model in supporting human-robot handovers.
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In the next section, we review prior work on joint action
and handovers in human-human and human-robot interactions.
This review is followed by a description of our model of
coordination in human-human handovers, the implementation
of this model on an robotic manipulator, and the evaluation of
the different coordination methods in a human-robot interaction
study. We then discuss our findings and their implications for
future work, concluding with a summary of our contributions.

II. BACKGROUND

A. Joint Action and Action Coordination
Physical collaborations require humans to engage in joint ac-

tions with their partners toward a common goal [26]. Advances
in the understanding of joint action in human interactions
have informed the development of supporting mechanisms for
human-robot joint action (e.g., [13, 18, 22, 28]). For example,
Hoffman and Breazeal [13] developed a computational model
that generated anticipatory actions for an assistive agent
to enable the agent to adapt to its user’s workflow in a
simulated assembly scenario. They showed that an agent using
anticipatory actions, compared to a reactive agent, formed a
more fluid team with its users, resulting in greater concurrent
activity with them. Inspired by coordination behaviors of human
teams, Shah et al. [28] developed a plan execution system called
Chaski that adapts to human partners and seeks to minimize
its partners’ idle time. Cross training has also been explored
as a strategy for designing effective human-robot teams [23].
These studies highlight the promise of drawing on human
coordination strategies to achieve fluid human-robot teams.

While prior work highlights the implications that success-
ful joint action has for improving team performance, user
experience is another factor that designers must take into
account when developing robots for physical collaboration.
For instance, in domestic tasks such as doing daily chores such
as unloading groceries, users may want to interact with robots
at their own pace, as opposed to aiming to maximize team
efficiency. Therefore, we postulate that solely maximizing task
performance may not necessarily result in desirable joint action.
We also highlight the importance of incorporating an awareness
of the partner’s task into planning one’s own actions.

B. Designing Handovers for HRI
Handovers involve the transfer of objects from a giver

to a receiver and serve as a fundamental skill for complex
collaboration and interaction. Prior work has investigated
various aspects of human-human handovers, including velocity,
force, and style, in order to inform the design of human-
robot handovers. For instance, Becchio et al. [5] found that
people display different velocity profiles when they hand
over an object compared to when they place the object on a
surface. Their characterization of handover motion profiles was
consistent with earlier observations, which showed that people
display minimum-jerk motions during handovers [14, 30].
Other work modeled grip force patterns during handovers to
design handover controllers [8]. To design a robot that more
effectively delivers flyers, Shi et al. [29] studied different styles

of handovers that shopkeepers used when distributing flyers to
passersby in a mall. While these studies provide useful insights
into the different facets of handovers, how people coordinate
handover actions in situations where the receiver is distracted
or delayed by a secondary task—a common occurrence in
everyday situations—is unknown.

Human-robot handovers offer a rich design space with a
large number of parameters. Research to date has explored
the role of gaze [21], approach angle and saliency [34],
contrast between start and end points of handover motion [7],
and anthropomorphism [31]. Moreover, prior work developed
methods to choose handover parameters such as pose and
trajectory that consider user preferences [6], user comfort [2],
object affordances [3, 9], and user mobility constraints [19]
that facilitate human-robot handovers. Although most work
focused on a robot handing objects to humans, how robots may
take objects from humans has also been investigated [2, 10].
Previous research has also explored how robots may utilize
handovers across a number of application scenarios, including
manufacturing [15, 34], household service [10, 19], or serving
drinks [7, 11]. Our work contributes to the exploration of the
rich design space for handovers by investigating the effects of
task demand on handover actions and developing new methods
to enable robots to adapt to their users’ changing task demands.

III. COORDINATION IN HUMAN-HUMAN HANDOVERS

In this section, we describe our study of human-human
handovers that informed our design of coordination strategies
to facilitate human-robot handovers.

A. Data Collection
Task & Setup – To better understand how people adapt

handover actions to task demands, we observed pairs of human
participants collaboratively unload a dish rack (Figure 1, top).
The task required one participant, the giver, to pick up plates
and cups in a drying rack and hand them to the other participant,
the receiver, who then placed these items on a nearby shelf.
Participants performed two variations of this task. In the first
variation, both the giver and receiver were engaged only in
unloading dishes, denoted by regular unloading hereafter. In
the second variation, in addition to unloading dishes, the
receiver was given a secondary task of matching patterns
on the items to specified target locations, denoted by tasked
unloading hereafter. We introduced the secondary task in order
to add to the receiver’s cognitive load [33], thereby increasing
task demand, such that the giver would need to adapt to the
receiver’s workload. Each dyad performed both task variations
once. The roles of giver and receiver within a dyad were
maintained throughout the interaction. Positions of participants’
body joints were recorded using Microsoft Kinect version 2.
The interactions were also video-recorded. Participants received
$5 USD for their participation in the study.

Participants – Eight dyads, two for each gender combination,
were recruited. Participant ages ranged 20–34 (M = 23.94, SD =
4.58). All dyads but one included participants who did not
know each other prior to this study.



B. Data Processing
Overall, we observed that givers (1) monitored the receivers’

task progress, especially in the tasked unloading task, and (2)
adapted to the receiver’s pace by pausing and/or slowing down
their actions. These observations informed our analysis for
further understanding coordination strategies in handovers.
1) Annotating User State

We categorized the handover activity into six different states
for the giver and the receiver. The giver’s states include (1)
reach: moving hand from a resting position or the center of
body to grasp an object; (2) retrieve: grasping and moving
the object to the center of body; (3) give: moving the object
from the center of body to the handover position; (4) handover:
both the giver and receiver touching the object and the giver
releasing the object; (5) retract: moving the hand back to the
center of body; and (6) idle: all other actions. Similarly, the
receiver’s states include (1) take: moving hand from the resting
position or the center of body to the handover position; (2)
handover: both the giver and receiver touching the object and
the giver releasing the object; (3) retrieve: the giver releasing
the object and the receiver moving it to the center of body; (4)
place: moving the hand from the body center to hand off of
the object; (5) retract: returning hand to the body center or a
resting position; and (6) idle: all other actions.

The video data was annotated with these states for a detailed
analysis of handover actions and for training an algorithm
for online prediction of user states during interaction with a
robotic manipulator (see Section IV-A). The data included 8389
and 12793 joint readings collected in the regular and tasked
unloading conditions, respectively. A primary rater coded all
of the data, and a secondary rater coded 10% of the data.
Inter-rater reliability analysis showed substantial agreement
between the raters (Cohen’s κ = .74) [16].
2) Smoothing Sensor Data

We applied an Exponentially Weighted Moving Average
(EWMA), a common noise reduction technique for time-series
data defined in Equation 1, to reduce noise in the raw joint
position data from the Kinect sensor.

xt = α yt–1 + (1 – α) xt–1 for t > 0, x0 = y0 (1)

where yt is the raw sensor measurement of the joint positions
in Cartesian space at time t, and xt is the filtered measurement
at time t. The weighting parameter α controls how much we
discount prior data, which our testing determined to be 0.2 for
best performance. The results reported below were based on
analyses using smoothed data.

C. Coordination Strategies
To understand how people coordinate their actions, we first

need to know when coordination strategies are needed. An
inspection of the average durations of receiver actions in each
state in the regular and tasked conditions, as illustrated in Figure
2, showed that receivers stayed in the retrieve and place states
longer in the tasked condition than in the regular condition.
These differences suggest that these states were likely to be
when givers had to adapt to the availability of the receivers.
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Fig. 2: Average durations of the receiver’s states in the regular and tasked
conditions. Receivers took longer in the retrieve and place states, suggesting
that these were the states in which the giver had to adapt their actions to the
receiver’s availability. Error bars indicate 95% confidence intervals.

Our analysis next focused on giver behaviors in order to
better understand the adaptations they displayed (Figure 3),
identifying two adaptive strategies: waiting and slowing down.

1) Waiting strategy
In the tasked condition, the giver adapted his/her actions by

waiting for the receiver to complete the secondary task before
resuming unloading dishes. The giver was found in this idle
state a total of 79 times (across 96 tasked trials). Waiting was
most commonly observed, a total of 35 times, after the giver
retrieved the item but before passing it to the receiver (e.g.,
keeping the item in front of body and ready for handover).
The giver also waited after retracting from the handover pose
but before reaching for the next object (24 times), and after
reaching toward but before retrieving the object (17 times).
In rare occasions, the giver waited in the handover pose (3
times). This waiting strategy is consistent with prior work that
reported the giver pausing his/her action until the receiver was
ready for handover [17].
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Fig. 3: Velocity profiles and example snapshots from adaptive coordination
strategies—slowing down (top) and waiting (bottom)—displayed by givers in
human-human handovers.
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Fig. 4: Average velocities of the giver’s hand across different states in the
regular and tasked conditions. Givers slowed down their actions during retrieve,
give, and retract states. Error bars indicate 95% confidence intervals.

2) Slowing-down strategy
In addition to the waiting strategy, we observed that the giver

adapted to the receiver’s availability by slowing down his/her
actions while the receiver was occupied by the secondary task.
We further inspected the velocity of the giver’s hand across the
two task conditions (Figure 4) and found it to be slower during
the retrieve, give, and retract states in the tasked condition than
in the regular condition. These observations confirmed that the
giver slowed down actions to adapt to the receiver’s availability
and highlighted the states in which the giver slowed down.

We note that people used these two strategies in a combined
and interchangeable way, as shown in Figure 3, and that slowing
down usually occurred prior to waiting, indicating that givers
slowed down their action and then paused if necessary.

IV. ENABLING ADAPTIVE HUMAN-ROBOT HANDOVERS

In this section, we describe our design of coordination
strategies to enable adaptive human-robot handovers based
on the strategies we identified in the human-human interaction
study. Our goal is to develop a human-aware controller that
adapts to the availability of the user in planning robot actions
for handover. To that end, we developed an autonomous system
that uses human joint positions to predict the state that the
user is currently in (Section IV-A) and determines what action
the robot should take accordingly (Section IV-B).

A. Predicting User State
Coordination in joint action requires knowledge of the

ongoing actions and the current states of interaction partners
[26]. To inform the robot of user actions and states, we
employed a Microsoft Kinect version 2 camera to track the
user’s body joints, extracted features from the body joints that
represented characteristics of the user’s current action, and
predicted the user’s current state using a K-Nearest Neighbor
(KNN) algorithm. We provide details of this process below.
1) Temporal and Spatial Features

Prior to extracting features, we applied an EWMA filter
(Equation 1) to the raw joint data in order to smooth out sensor
noise. Using the filtered data, we derived the following features
to represent the spatial and temporal state of the user.

• Hand velocity (∆xhand
t ): This feature captures the velocity

of the user’s active hand. Note that the user might use

different hands in different states. For instance, the receiver
may use the right hand to take the object and the left hand
to place it. This feature was calculated using equation:

∆xhand
t =

xhand
t – xhand

t–1

∆t
(2)

where xhand
t ∈ R3 is the Cartesian position of hand_left

or hand_right joints in the Kinect joint structure, and
∆t is the duration between sensor readings (about 30ms).

• Extension (xext
t ): This feature represents the extension of

the user’s arm as a vector from the origin of the body,
denoted as xorigin

t , to the active hand.

xext
t = xhand

t – xorigin
t (3)

The position of the spine_mid joint is used as xorigin
t .

• Approach (xapp
t ): This feature characterizes the extent to

which the user’s arm approaches the other agent as a
vector between the active hand and the midpoint of the
body centers of the two parties. The basis of this feature
was the observation that handovers happen approximately
at the midpoint between two parties [4].

xapp
t = xhand

t – xmidpoint
t (4)

xmidpoint
t =

xorigin
t + xorigin other

t

2
(5)

The state of the user is represented with a feature vector
consisting of these three features, f = (∆xhand

t , xext
t , xapp

t ).
2) State Prediction

We used a KNN classifier to predict the user’s current state
based on the features described above. When a new observation
arrives in the form of a feature vector, the algorithm finds the
K most similar instances in the training dataset (the annotated
data from the human-human interaction study) according to
the distance measure in Equation 6.

d(f , f̄ ) = ‖∆xhand
t – ∆xhand

t ‖ + ‖xext
t – xext

t ‖ + ‖xapp
t – xapp

t ‖ (6)

where f denotes the new observation to be classified; f̄ denotes
a sample in the training dataset; and the distance between
individual feature pairs are the L2 norms of the difference
vector. The weights of the features in f were chosen to be
equal, indicating that each feature contributes to the prediction
equally, based on our preliminary testing. We set K to be 35 for
this application (See Section IV-A3), i.e., the 35 most similar
instances in the annotated data formed a group of candidate
predictions. The prediction of the user’s state was based on the
majority vote of the 35 candidates. The algorithm’s confidence
for each prediction was calculated using Equation 7.

Confidence =
number of majority classifications

K
(7)

We calculated average confidence scores for correct and
incorrect predictions, shown in Table I, and used these scores
as thresholds to filter out predictions with low confidence.



TABLE I: Confidence scores for KNN-based prediction of receiver states.
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Take Handover Retrieve Place Retract Idle Dropping %

92.03 68.07 89.77 94.39 90.27 83.99

72.96 64.64 70.11 75.52 71.13 75.94 17.80%

38.44%

16.62%

40.64%Correct

Incorrect

89.93 61.74 88.02 92.46 86.84 92.95

68.29 56.25 65.29 74.16 69.22 62.97

3) Parameter Selection and Evaluation
The parameters, including α for the EWMA filter and K for

the KNN algorithm, were tuned based on eight-fold leave-one-
out cross-validation, using seven dyads for training and the
remaining dyad for testing. Since the two datasets—regular and
tasked unloading—yielded similar results (0.4% difference in
accuracy), we chose to use the best parameters learned from the
regular dataset. To assess the effectiveness of our KNN model
in predicting the receiver’s state, we conducted another eight-
fold leave-one-out cross-validation using the tasked dataset
with the chosen parameters (Figure 5). The results of this test
showed that our KNN model more accurately predicted receiver
states than two baselines—chance and most common guess
[1]—did. The chance baseline involves random guesses of user
state, and the most common guess baseline always predicts the
state that most commonly appeared in the training data.

In addition to the ordinary use of KNN, we explored
confidence thresholding using the thresholds that we calculated
for incorrect predictions. This method resulted in a tradeoff
between improved accuracy and the number of dropped predic-
tions; our results showed that confidence thresholding improved
accuracy by approximately 6%, although approximately 17% of
the predictions were dropped. The dropped predictions usually
occurred during transitions between states. For the human-
robot interaction study, reported in Section V, the algorithm
dropped 15.35% of the predictions. The average duration of
dropped predictions was 198.68 ms, while the algorithm made
a prediction every 46.4 ms. We found the rate and duration of
dropped predictions to be acceptable in our application, as our
algorithm provided predictions at a high frequency.

B. Generating Robot Actions
The coordination strategies that we observed in human-

human interactions informed the development of a model
to emulate human-style adaptive coordination, as outlined in
Algorithm 1. Here, userState is provided by the KNN
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Fig. 5: Cross-validation results of our KNN model in predicting receiver states
using the tasked dataset. The dashed line indicates baseline accuracy (16.67%).

model described above. The delayThreshold parameter
was set to 1.36 seconds, which was the average duration for
people to finish retrieving and placing an object when no
secondary task was present. In Line 1 of Algorithm 1, the
robot’s waiting position is determined based on a probability
distribution obtained from our data on human-human interac-
tions (Section III-C1). In Line 3, currentRobotState is
specified by a deterministic finite state machine that represents
the sequence of giver states. Our model was implemented in
ROS [24] to control a Kinova MICO robotic arm, shown in
Figure 1. We used force-sensor information from the robot’s
joints to determine whether or not items in the robot’s gripper
were grasped by the user and to plan for their release.

V. EVALUATION OF HUMAN-ROBOT HANDOVERS

In this section, we report on a study of the effects of
adaptive coordination on objective and subjective outcomes
of human-robot handovers. In particular, we evaluated the
effectiveness of the coordination strategies described above in
improving task performance and user perceptions in handover
interactions where a robotic manipulator passed objects to
human participants in a common household scenario.

A. Hypothesis
Our evaluation tested the central hypothesis stated below

regarding the effects of a robot’s use of human-inspired
coordination strategies on team performance and perceptions
of the robot under different levels of task demand.

Hypothesis — When users are under high levels of task
demand, the robot employing coordination strategies that enable
it to adapt its handover actions to its user’s task will improve
team performance and user experience with and perceptions of
the robot, while employing these strategies will not offer similar
benefits when users are under low levels of task demand.

B. Experimental Design, Task, & Conditions
To test our hypothesis, we conducted a 3×2 within-

participants study in which we manipulated the coordination
method that the robot employed and the level of task demand
under which the participants worked. The paragraphs below
describe the three coordination methods considered in the study.

Algorithm 1 Adaptive Coordination Strategy for Handover
Require: userState, delayThreshold
1: probabilistically select a robot waiting position
2: while ISCURRENTHANDOVERTRIALACTIVE( ) do
3: currentRobotState ← GETROBOTSTATE( )
4: robotAction ← GETROBOTACTION(currentRobotState)
5: if userState = retrieve or place then
6: if ELAPSEDSTATETIME( ) ≥ delayThreshold then
7: if ISROBOTATWAITINGPOSITION( ) then
8: WAIT( )
9: else

10: SLOWEXECUTION(robotAction)
11: end if
12: end if
13: end if
14: REGULAREXECUTION(robotAction)
15: end while
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Fig. 6: An example human-robot handover using our method for adaptive coordination that employed the waiting and slowing-down strategies.

Proactive coordination — Following this method of coor-
dination, the robot did not take the user’s task demand into
account when planning its actions. After handing an object
to the user, the robot proactively fetched the next object and
presented it to the user, even if the user was not ready to
take the next object. Using this method, the robot aimed to
minimize the user’s idle time and to maximize concurrent
activity with the user, measures proposed by prior work as
objective indicators of fluid teamwork [12, 23, 27, 28].

Reactive coordination — In contrast to the proactive coordi-
nation, the robot following this method waited for its user to
fully complete the task, thus reacting to the user’s availability.
When the user returned to an idle state, the robot fetched the
next object. This method enabled a turn-based interaction in
which interaction partners asynchronously contributed to the
task. Prior work has characterized this method of coordination
as a form of joint action [22].

Adaptive coordination — The robot achieved adaptive
coordination by following Algorithm 1, which enabled the
robot to utilize the waiting and slowing-down strategies to
adapt to its user’s task demand.

Moreover, we introduced a manipulation to the experimental
task to create two levels of task demand as described below.

Low task demand — In this setting, participants were asked
to engage in the task of unloading dishes, where the robot
passed four plates and two cups to its user, and the user placed
the objects on a shelf, as shown in the bottom of Figure 1.
Because people can take and place an object faster than it takes
the robot to fetch and deliver the object, this setting creates a
lower level of task demand for the user.

High task demand — In this setting, in addition to the task
of unloading dishes, participants were engaged in a secondary
task, which involved solving a math problem attached to each
object and placing the object in a location on the shelf that
corresponds to the answer. Each problem consisted of nine
single-digit numbers and involved all four arithmetic operations
(i.e., addition, subtraction, multiplication, and division) twice
(e.g., 7× 2 – 2 + 6÷ 3 – 9 + 2× 8÷ 4). These problems were
designed to ensure that each problem had a similar level of
difficulty. The same set of 18 unique math problems was used
for each participant. The problems were randomly assigned to
objects and to coordination methods in order to prevent any
systematic bias due to differences in problem difficulty. In each

round of interaction, nine potential answers, six of which were
correct for the six handover actions, were provided along with
the option “not able to find the answer.” The design of this
task aimed to create a higher level of task demand for the user.

The three coordination methods and two task-demand levels
comprised six experimental conditions. The robot followed the
same pre-programmed motion trajectories across all conditions.

C. Measures
We used objective and subjective measures to assess the

effectiveness of the three coordination methods. Objectively,
we measured team performance as informed by prior work
[12, 23, 28]. In particular, we measured task completion time
(the time between the robot’s first move to pick up the first
object and the user placing the last object), concurrent activity
(the proportion of the total time that both the user and the
robot were in action to the total task completion time), user
idle time (the proportion of task completion time to total time
of inaction by the user or the robot), and robot idle time.

In addition to objective measures, we developed four scales—
fluency, intelligence, awareness, and patience—to measure
participants’ experience with and perceptions of the robot.
The fluency scale extended a previously proposed measure of
subjective fluency [12] and consisted of five items (Cronbach’s
α = 0.91). The scales of intelligence, awareness, and patience
consisted of four (Cronbach’s α = 0.88), two (Cronbach’s
α = 0.83), and four (Cronbach’s α = 0.85) items, respectively.
All items were on a seven-point rating scale (1 = Strongly
Disagree, 7 = Strongly Agree).

D. Procedure
Following informed consent, participants spent a minute

to review the order of operations and the multiplication
table prior to beginning the task. The study involved six
rounds of interaction—one round for each condition. The
order of coordination methods and levels of task demand were
counterbalanced. After each round of interaction, participants
filled out a questionnaire regarding their experience with and
perceptions of the robot. Finally, the experimenter conducted
a post-experiment interview. The study took approximately 50
minutes. All participants received $10 USD as compensation.

E. Participants
A total of 26 participants were recruited from the local

community. However, two participants were excluded from the
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Fig. 7: Interaction plots and ANOVA test details for objective measures of team performance (left) and subjective measures of user experience (right).

data analysis, as one of the them did not finish the task, and
the other one failed to follow instructions. The resulting 24
participants (13 females, 10 males, and one unspecified) were
aged between 18 and 35 years (M = 20.54, SD = 3.72) and
reported little familiarity with robots (M = 2.79, SD = 1.47 on
a seven-point scale). None of the participants in this study had
taken part in the human-human data collection study.

F. Results
Our analysis of the data from each measure involved a two-

way repeated-measures analysis of variance (ANOVA), using
coordination method, task demand, and their interaction as
independent variables and participant ID as a random variable.
Guided by our hypothesis, our analyses focused the interaction
between coordination method and task demand. Six a priori
pairwise comparisons, using a Bonferroni-adjusted α level
of .008 (.05/6) for significance, were carried out to identify
differences across conditions for each objective and subjective
measure. For readability, details of statistical tests are omitted
from the text, and test details for interaction effects and pairwise
comparisons are provided in Figures 7 and 8, respectively.

1) Objective Measures
Across all objective measures, our analyses revealed signifi-

cant interaction effects between coordination method and task
demand. At lower levels of task demand, pairwise comparisons
showed no differences in any measure of team performance
across coordination methods. In contrast, at high levels of task
demand, the coordination method that the robot used had a
significant effect on the task performance of the human-robot
team in measures of task completion time, concurrent activity,
user idle time, and robot idle time. In particular, our results
showed that, among the three methods, proactive coordination
yielded the greatest outcomes in our task performance measures,
followed by adaptive coordination, while reactive coordination
resulted in the poorest outcomes.

2) Subjective Measures
Similar to the objective measures, our analyses revealed

significant interaction effects between coordination method
and task demand for all subjective measures. Comparisons
showed that, across different coordination methods, there were

no significant differences in participants’ perceptions of team
fluency and of the robot in terms of intelligence, awareness,
and patience when they were under high levels of task demand.
However, differences in subjective measures emerged when
participants were under high levels of task demand during their
interactions with the robot.

Interestingly, while objective outcomes of team performance
in measures of concurrent activity, user idle time, and robot
idle time indicated a better performance when the robot used
the proactive coordination method, the subjective measure
of fluency indicated otherwise. Participants perceived their
interactions with the robot using the proactive coordination
method to be less fluid compared to the other two coordination
methods. Both reactive and adaptive coordination yielded a
similar degree of perception of team fluency. Our analyses of
the data from measures of perceived intelligence, awareness,
and patience of the robot were consistent with these findings.

VI. DISCUSSION

We identified two coordination strategies, waiting and slow-
ing down, from data on human-human handovers in a household
application scenario and developed an adaptive coordination
method involving these two strategies. We implemented a robot
system that autonomously performed handovers with users
in a similar scenario and evaluated the effectiveness of our
adaptive coordination method against two alternative methods
in facilitating human-robot handovers. Our results showed a
tradeoff between team performance and user experience. Below,
we discuss our results and their implications for designing
effective coordination strategies for human-robot collaboration.

A. Design Implications
Our results showed that the effects of coordination methods

were differentiable only when participants’ task demand was
greater than that of the robot, suggesting that a robotic assistant
should monitor the task progress of its user and employ
coordination methods as appropriate and when necessary. Our
results further revealed a tradeoff between task performance and
user experience based on the coordination method employed.
While proactive coordination significantly improved team
performance in measures of concurrent activity and idle time, it
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Fig. 8: Data from measures of team performance and user experience. P, R, and A represent the proactive, reactive, and Adaptive coordination methods,
respectively. Pairwise comparisons use a Bonferroni-adjusted α level of .008 for significance. Error bars indicate 95% confidence intervals.

impaired users’ experience with and perceptions of the robot. In
line with prior work, this result indicates that task efficiency and
user perceptions of team fluency are not necessarily positively
correlated [13]. It also suggests a lack of correlation between
perceived and objective measures of team fluency, as suggested
by prior work on human-robot collaboration [12, 28]. We
therefore argue that team fluency is a complex construct that
could not be defined only objectively but that it requires a
consideration of partners’ perceptions and their task demands.

Team experience and performance are equally essential ele-
ments of joint action [20]. We found that proactive coordination
improved team performance but hurt user experience. We
speculate that this result was due to the pressure that the
proactive robot may have imposed on users to complete their
secondary task, as suggested by the excerpt below.

It [the robot] moved really quickly and I was holding one
plate still trying to figure out the problem and feeling like
I have to pick up the next plate, so that was stressful.

Conversely, reactive coordination improved user experience but
reduced team performance, as indicated below.

It [the robot] waited until I put the plate down to move
again, hmm and that was almost too slow because then
I’d have finished the math problem and be waiting to get
the next one.

Finally, adaptive coordination improved team performance
while maintaining the support that reactive coordination pro-
vided for user experience, as predicted by prior research on
human-human joint action [20, 26].

B. Limitations
This work has limitations that motivate future investigation.

First, we focused on a particular handover application that
involved interaction partners unloading dishes. While we
speculate that the coordination strategies of waiting and
slowing-down will be applicable to other applications, the
parameters that we derived from the collected data may not be

applicable to new applications. This work, however, illustrates
a process for building coordination mechanisms for interactive
robots. Second, although we demonstrated the potential of a
KNN algorithm in predicting user state, its effectiveness and
efficiency depend on the size of the training dataset. Although
a larger dataset promises better accuracy, it may decrease
efficiency due to the number of comparisons that the algorithm
has to perform on the fly. Future work can explore alternative
models such as decision trees (e.g., [32]) and probabilistic
graphical models (e.g., [11]) for effective, efficient prediction
of user states. Finally, the robotic manipulator used in this
work placed constraints on the different characteristics of the
motions it produced, including trajectories, velocity, and noise.

VII. CONCLUSION

In human physical collaborations, parties adaptively coordi-
nate their actions in order to achieve more fluid interactions and
greater team performance and experience. This work contributes
to the development of new methods for enabling similarly fluid
and effective human-robot handovers in three ways. First, it
offers a computational understanding of how people adapt their
handover actions to the workload of their partners. Second, it
demonstrates an autonomous robotic manipulator system that
takes into consideration a real-time awareness of the task status
of its user in performing handover actions. Third, it shows
that use of different coordination methods results in a tradeoff
between team performance and user experience. Our work
also offers insights into the rich and nuanced design space for
mechanisms that facilitate joint action in human-robot teams.
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