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Abstract— Grasping objects in confined environments, such
as shelves, fridges, or drawers, is challenging due to the
difficulty of avoiding gripper and arm collisions with the
surfaces surrounding the object. In this paper we explore the
use of a tool to reconfigure objects in such environments so as
to make them graspable. The proposed tool has a simple form
that allows it to be used in confined environments and a high
friction tool tip that enables not only pushing objects but also
pulling them. Our approach involves learning predictive models
of pre-defined object-directed tool actions from experience. For
each action, we train a multi-modal regressor that maps the
initial state of an object to changes in that state, such that
future states of the object can be estimated. These allow the
robot to choose a sequence of tool actions that yield graspable
configurations. We demonstrate that our approach enables a
PR2 robot to grasp five different objects from different, initially
ungraspable, configurations on a shelf.

I. INTRODUCTION

Grasping is one of the most important and well-studied
capabilities for robots with manipulators and grippers. It
allows a robot to gain full control over an object, enabling
its transportation, reconfiguration, or modification. Despite
the tremendous progress in grasping research, driven by
new perception and planning algorithms, grasping objects
in confined and cluttered environments is still difficult.

One approach explored in the literature for dealing with
such challenging environments is to use non-prehensile ma-
nipulation of objects to reconfigure them in a way that
facilitates or avoids grasping. This can involve pushing the
target object before grasping it [4] or pushing other objects
away to enable grasping of the target object [5], [12].
Previous work exploring this approach has focused on the
use of the robot’s gripper or arm to accomplish the non-
prehensile manipulation. In this work, we propose using a
simple tool specifically designed to manipulate objects in
confined environments. The size and shape of the proposed
tool is chosen to be ideal for pushing objects through point
and surface contacts within confined spaces. At the same
time, the high friction end-effector of the tool allows for
pulling objects without requiring an articulated form that
reaches behind the object.

We present a method to apply the tool on non-graspable
objects so as to make them graspable. Our method is based
on predictive models of object-relative tool actions. These
models are multi-modal regressors that are learned from
experience and allow the robot to predict the change in
the state of an object due to a tool action. We design ten
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tool actions and systematically evaluate our approach in the
context of grasping objects from a shelf with a PR2 robot.
We characterize the behavior of the tool actions, evaluate the
effectiveness of the learned models, and demonstrate that the
robot is able to appropriately use the tool to make objects
graspable.

II. RELATED WORK

Previous work has explored the use of a robot’s end-
effector for reconfiguring objects through non-prehensile
manipulation (i.e., without achieving a rigid grasp on the
object and control it in 6D) [15]. The majority of this work
focuses on the planning problem of efficiently computing a
sequence of various robot actions to move an object from
an initial configuration to a target configuration [1], [3],
[6], [16], [8], [21], [18], [20], [14], [23], [5]. Many of
these techniques extend sampling-based planners to different
task spaces with alternative models of actions or object-
manipulator interactions. For instance Barry et al. propose
a sampling-based algorithm for planning with a combination
of manipulation actions such as picking and pushing [1].
Dogar et al. address the problem of picking things up from
a cluttered shelf by planning motions that simultaneously
move a target object into the gripper while pushing clutter
away [3].

Models of a robot’s manipulation actions can be at differ-
ent levels of fidelity, from physics based models that involve
force interactions on objects [19], [12], [3], [14] to high-level
abstract models in the robot’s perceptual space [11], [20],
[10], [8]. Others avoid modeling the the effect of actions
at the level of state changes but rather directly predict the
quality of the expected next state [6]. Methods exist both for
continuous or parametrized action spaces [3], [8] and discrete
sets of primitive actions [6], [17], [1].

Much of previous research involves empirically acquir-
ing parameters of action models. For example, in Dogar’s
work, the response of a cylindrical object in response to
pushing it with the robot’s gripper from different initial
positions is obtained empirically [4]. Mericli et al. learn
how moveable furniture behave in response to pushing with
a mobile robot [17]. Similar to our approach, Scholz et
al. create empirical models of how objects on a table move
in response to six predefined push actions [20]. Hermans
et al. learn how objects of arbitrary shape will behave in
response to pushing from different directions [7]. Most work
focuses on non-prehensile manipulation using the robot’s
gripper or differently shaped end-effector. Although using
a tool that is rigidly connected to the robot’s gripper is
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Fig. 1. (a) Experimental setup with the shelf in front of the robot. (b)
Five objects used in experiments.

equivalent to controlling the robot’s end-effector, Stoytchev’s
work, investigates the use of differently shaped tools, such
as hooks, for manipulating objects [22].

Our work differs from previous work in several ways.
Unlike most work our focus is not on planning; rather,
we focus on the empirical modeling of tool actions and
exploit the expressiveness of pre-defined tool actions using
a very simple planning approach. We propose the use of a
novel tool specifically designed for manipulation in confined
environments. While most previous work aims to enable
general object-reconfiguration or to characterize the object
through manipulation, we focus on reconfiguring objects
specifically for the purpose of grasping them afterwards.

III. APPROACH

A. Domain

The scenario considered in this paper involves picking up
objects from a shelf. The starting point for this scenario is the
Amazon Picking Challenge (APC)1 which involves picking
up Amazon.com items from small shelves in a warehouse
setting. One challenge for picking up objects in this scenario
is to find a grasp plan that avoids collisions between the
shelf and the robot’s gripper and arm. Many other real world
scenarios involving manipulators, such as fetching items
from a fridge, drawer, cabinet, bin, or shelf, involve the same
challenge. In this paper we consider a more common class
of shelves, different front the APC shelf in that it does not
have an incline and lip at the edge to prevent objects from
falling when the shelf moves. The shelf has a cell with a
width of 38 cm, a height of 26 cm and a depth of 38 cm,
shown in shown in Fig. 1(a).

We use a subset of five objects from the APC shown in
Fig. 1(b): a box of crayons, a box of pencils, a book, a
reclosable pack of cat food, and a bath toy in its original
packaging. The objects are chosen to be diverse in size,
shape, and default orientation (standing up versus lying on
a surface), hence creating a different set of challenges for
grasping.

B. Platform

The robot platform used in this research is the PR2
(Personal Robot 2) which is a dual-arm mobile manipulator
with an omnidirectional base. The PR2’s arms have 7 degrees
of freedom (DOFs). The last joint positioned at the wrist is

1http://amazonpickingchallenge.org/
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Fig. 2. (a) Point cloud of shelf and object scene as seen by the robot;
localized shelf shown in green. (b) Shelf cell (transparent gray), detected
object bounding box (yellow), and model of the tool (pink).

capable of 360 degree continuous rotations. The arms have
1-DOF under-actuated grippers with parallel fingertips that
open to a max distance of 8 cm. For perception of objects the
robot uses a Kinect sensor mounted on the robot’s pan-tilt
head.

C. Perception

Grasping objects and manipulating them with a tool
requires segmenting the object from its background and
localizing it relative to the robot. In this work, we assume
that the robot has an accurate model of the shelf on which the
items are placed and is able to localize the shelf. To segment
and localize objects that are on a certain cell of the shelf,
the robot crops the point cloud obtained from the Kinect to
only include points within the localized shelf cell. Then it
clusters these points into smaller point clouds, based on k-
means clustering, with each point cloud corresponding to an
object. In this work we assume that there is only one object
on the shelf or the target object is indicated by the user.

The grasp planning algorithm used in this work directly
takes the segmented point cloud as input. Tool actions, on the
other hand, are defined relative to the smallest bounding box
(i) that encloses the object and (ii) whose axes are aligned
with the principle components of the point cloud projected
onto the horizontal plane.

D. Grasping

The grasping process has two steps. First the robot detects
potential gripper positions in which closing the gripper would
result in a rigid grasp (i.e., a net zero force on the object).
Since the gripper only has two contact points, this relies on
the friction force generated at the contact points. To detect
such grasp poses, we use an implementation of the heuristic
grasp generation algorithm in [9], which is provided in the
PR2 Gripper Grasp Planner Cluster2 package for the Robot
Operating System. This algorithm takes the segmented object
point cloud as input. It generates candidate gripper positions
near the object at different approach angles. A candidate
is considered a potential grasp point if it has a number
of object points between the two fingertips and no points
intersecting with the gripper. Next, the robot eliminates some
of the potential grasps if they collide with obstacles in the
environment, i.e., other objects or the shelf.

Given a set of potential non-colliding grasps, the robot
then tries to find a sequence of joint angles that lead

2wiki.ros.org/pr2 gripper grasp planner cluster
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Fig. 3. Ten pull and push tool actions used for reconfiguring the object.

to placing the gripper at the desired pose while avoiding
collisions along the way. To that end we use the MoveIt3

implementation of a motion planning algorithm called RRT-
Connect [13]. If no such plan exists, the corresponding grasp
is eliminated. If at least one such plan exists, the object
is considered graspable. If the object is not visible on the
shelf, the input point cloud is empty and the object is not
considered graspable.

E. Tool Actions

The robot reconfigures non-graspable objects using a sim-
ple tool shown in shown in Fig. 1(a). The tool is a rectangular
prism with dimensions 160 mm length, 30 mm width, and
5 mm thickness. On one end it has a handle shaped like the
PR2s fingertips, with edges that prevent it from sliding. On
the opposite end it has a textured silicon area with a high
friction constant to enable pulling with the tool. The tool sits
on a mount on the PR2’s shoulder where the robot is able
to grasp the tool with a pre-specified motion.

Tool actions are represented as a sequence of 6D tool poses
relative to the bounding box of the object. We implement ten
different tool actions (illustrated in Fig. 3):
• Front center push (a1): (i) approach the object from

the front surface, centered in the y-direction with tool
tip facing the object; (ii) move tool towards the object
in x-direction past beyond the front surface; (iii) revert.

• Front side push (R/L) (a2, a3): (i) approach the object
from the front surface, on one side (right/left) of the
object in the y-direction with tool tip facing the object;
(ii) move tool towards the object in x-direction past
beyond the front surface; (iii) revert.

• Side corner push (R/L) (a4, a5): (i) approach the object
from one of the side surfaces, close to the front edge; (ii)
move tool towards the object in y-direction past beyond
the side surface; (iii) revert.

• Side surface push (R/L) (a6, a7): (i) approach the
object from one of the side surfaces, past beyond the
back edge; (ii) move tool towards the object in y-
direction past beyond the side surface; (iii) revert.

• Top pull (a8): (i) approach object from the top surface,
centered in the y-direction, (ii) move tool down until
contact is made, (iii) move tool away from the object in
the x-direction, (iv) move tool up to break the contact.

• Top side pull (R/L) (a9, a10): (i) approach object from
the top surface, centered in the y-direction, (ii) move
tool down until contact is made, (iii) move towards one

3www.moveit.org

of the sides in the y-direction, (iv) move tool up to break
the contact.

Given the object bounding box, the robot considers the
surface between the two leftmost edges as the left surface
and the two rightmost edges as the right surface. The front
and back are assigned accordingly. Different parameters of
the tool actions, such as pushing height (for a1–a7) or push-
ing/pulling distance (for a1–a10), were tuned empirically
through experiments with objects of various shapes. Since
the robot always holds the tool in the same configuration
from the tool handle, the transform from tool poses to end-
effector poses is fixed. As a result the robot can use the same
motion planner, as the one used for grasping, to achieve the
action-specific tool pose sequence. The tool is added to the
robot model for this planning process to avoid collisions of
the tool with the shelf and the target object (except for poses
that are intended to contact the object). If a no-collision plan
does not exist for a given object configuration, the action is
considered unavailable.

F. Learning Tool Action Models

The core problem addressed in this paper is finding the
right sequence of tool actions to make a non-graspable object
graspable. To that end, the robot needs a predictive model
of how a tool action will effect an object. The method used
In this paper is to learn such a model from experience.

We represent the state of an object on the shelf with the
pose of its bounding box. Since most actions are intended
to translate and rotate the object on the shelf surface, we
only consider its 3D planar pose rather than its 6D pose.
To account for actions that might tip the object over, we
also consider the dimensions of the object as part of its
state. Hence the complete state representation is still 6
dimensional: s = (x, y, θ, h, w, d)4.

The problem is then framed as learning a function that
can predict the final state of an object s′ or the change in the
object state s′−s when the action a is applied to the object in
state s. Since we have a discrete set of actions, we choose to
learn a separate function for each action; e = s′−s = fa(s).
As s and s′ are multi dimensional continuous variables, this
is a multi-modal regression problem.

In this paper, we explored the use of two multi-modal
regression methods: Linear regression (LR) with ordinary
least squares and Gaussian Process regression (GPR). In both
of these techniques, the output variables of the regressor
(i.e., individual dimensions of e) are assumed to be inde-
pendent. LR is chosen for its simplicity and interpretability
of the learned model. GPR is chosen for its ability to capture
non-linearities and for providing a confidence measure (mean
squared error) associated with each prediction. They have
been demonstrated to be effective in learning transition
models (similar to the tool action models in this paper) in the
reinforcement learning framework [2]. We used the scikit5

implementation of both regression methods.

4This representation is equivalent to the 6D pose of the object, but we
preferred it for its ease of interpretation.

5http://scikit-learn.org/
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Fig. 4. Top view of initial object configurations on the shelf for datasets
(a) D1 and (b) D2. (c) Example sheet showing object configuration outline
used during data collection.

G. Planning Tool Action Sequences

The predictive models of the tool actions allow the robot
to estimate the new pose of an object after the action is
applied. To evaluate whether the object is graspable or not
in a predicted state, the robot transforms the original point
cloud of the object to the predicted pose and performs a
grasp evaluation as described previously.

To use the learned predictive models as part of planning
a sequence of actions that make an object graspable, we
propose a simple forward planning algorithm. First, the robot
creates a prediction tree that has the current state of the object
at the root and expands the tree by adding child nodes that
correspond to predicted states after all possible actions are
applied to the state in the parent node. Each edge in the tree
corresponds to a tool action. Each node corresponds to the
predicted state of the object after the actions on the path from
the root to the node have been applied to the object. Nodes
have a confidence, p(st), associated with them. These are
computed by accumulating the confidence of each prediction
along the plan; p(st) =

∏t
i=0 p(si) where s0, .., st is the

unique path on the tree that leads to the node st through a
sequence of actions a1, .., at.

After expanding the tree to a fixed depth, the robot evalu-
ates the graspability of the object in the predicted poses cor-
responding to each node. To allow comparisons of alternative
plans, we use a continuous measure of graspability, g(st),
computed as the number of possible alternative grasps on the
object in a predicted state. To select a plan from the expanded
tree, we assign each node a utility u(st) = p(st)g(st) and
choose the plan leading to the node that maximizes this
utility; s∗t = argmaxst∈T (u(st)). This allows a balance
between our confidence in reaching the predicted state and
the quality of the grasp in the predicted state.

IV. EVALUATION
We evaluate our approach in the domain described in

Sec. III-A. We first describe the data collected for training
and testing the predictive models, then present an analysis
of the predictive model performance, and lastly analyze the
performance of the overall system in finding plans.

A. Data

To train and test the multi-modal regressors we collected
a dataset consisting of (s, a, s′) tuples, where s is the initial
state, a ∈ {a1, .., a10} is the tool action, and s′ is the state
of the object observed after the action is applied. We refer
to the collection of each tuple as a trial. We collected two
datasets (summarized in Table II):

0

30

60

90

120

Crayons Pencils Book Cat food Bath toy

s graspable
s non-graspable, s’ non-graspable
s non-graspable, s’ graspable

# 
of

 tr
ia

ls

0

3

6

9

12

Crayons Pencils Book Cat food Bath toy

s graspable
s non-grasp., all s’ non-graspable
s non-grasp., at least one s’ graspable

# 
of

 c
on

fig
ur

at
io

ns

(a) (b)

Fig. 5. (a) Distribution of trials in the D1 dataset (out of 120 for
each object) in terms of whether objects were graspable or not before and
after the tool actions. (b) Distribution of configurations in D1 according to
whether the object was graspable (in majority of the trials) or not before the
tool action and whether there was at least one action that made the object
graspable.

• D1 systematically covers different positions and orien-
tations on the shelf

• D2 involves edge cases in which the object is unlikely
to be initially graspable

These datasets are specific to the particular tool and shelf we
used. For D1 we varied s by placing each of the five objects
in four different positions on the shelf in three different
orientations as illustrated in Fig. 4(a). D2 involved position-
ing each object adjacent to the shelf in two intermediate
orientations illustrated in Fig. 4(b). We used different subsets
or combinations of these datasets throughout our evaluation.

TABLE I
SUMMARY OF COLLECTED DATASETS (SEE ALSO FIG. 4).

name objects positions orientations actions total

D1 5 4 3 10 600
D2 5 1 2 10 100

Before moving on to learning results, we characterize
the behavior of the tool actions explored in this paper
based on D1. We saw that 48.5% (291/600) of trials in
D1 have an initial state s in which the object is graspable.
Out of the trials with non-graspable initial configurations,
14.5% (45/309) became graspable after a single tool action.
When objects are already graspable, tool actions can have a
destructive effect: 9% (54/600) of configurations in D1 were
initially graspable and the object became non-graspable after
the tool action.

The distribution of trials in terms of whether objects were
graspable or not before and after the tool actions is further
broken down by objects in Fig. 5(a). We see that the pencils
and the book were particularly challenging: they were not
initially graspable in a larger set of trials and fewer tool
actions made them graspable. As seen in Fig. 5(b), these
two objects had a higher number of configurations in which
none of the actions made the object graspable. The cat food
also has one configuration in which none of the tool actions
worked, while the crayons and the bath toy could be made
graspable by at least one action in all configurations.

To allow an investigation of regularities in the effects of
different tool actions, Fig. 6 provides s′ − s (for the first
three dimensions only) grouped by actions. We observe that
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Fig. 6. Effects of the ten tool actions on the object state (changes in x,
y, and θ) based on D1. Error bars show standard deviation.

the average effects of actions are as expected. For example,
a1 (front center push) causes a large change in the x-axis;
it moves the object away. a8 (forward pull) has the opposite
effect of pulling the object forward, with a negative change
in the x-axis. a2 and a3 (front side push) rotate the object
in opposite directions (in θ), while also pushing it away.
Similarly, the action pairs a4–a5 (side corner push), a6–a7
(side surface push), and a9–a10 (side pull) move the object
in opposite directions towards the sides (y-axis).

Although tool actions show regularities on average, we
observe a large variance in their effects. This implies that the
effect of a tool action may depend on the particular object
and its state. The goal of the learned predictive models,
analyzed in the next section, is therefore to predict the
particular effect within the observed variance.

B. Analysis of Learning Predictive Models

1) Regression errors: As described in Sec. III-F, we
explored two different multi-modal regression techniques
to address our problem of learning predictive models of
tool actions. Fig. 7 shows the average errors of the trained
regressors on all dimensions of the output space (s′ − s).
We see that Gaussian Process (GP) regression leads to a
very small error on the training set, as compared to the
Linear regressor, as it is able to better capture the non-
linearities in the data due to tipping of objects or hitting
the edges of the shelf. The error of the Linear regressor is
nonetheless low (around 1cm in x and y-axis translation, 10
degrees in yaw rotation). When tested with configurations
that were not in the training data (D2) GP regressors resulted
in higher error, showing evidence of over-fitting. The Linear
regressor generalized better to unseen configurations, with
errors remaining within a similar range. Despite this finding,
our analysis focuses on GP regressors as it is the method
that supports our planning approach.

When the prediction errors are broken down by action,
as shown in Fig. 8 we see that the errors reflect the way
in which the test data is different from the training data.
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Fig. 7. Error for Gaussian Process and Linear regressors trained with the
D1 dataset and tested on (left) D1 and (right) D2. θ errors are in degrees
and all other dimensions are in mms. Error bars indicate standard error.
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Fig. 8. Error for the Gaussian Process regressors trained with D1 and
tested on D2 split by the ten tool actions. x and y errors are in mms and θ
errors are in degrees. Error bars indicate standard error.

In particular, the objects being placed near one of the sides
of the shelf (Fig. 4(b)) caused the actions to have effects
that were different from expected. For example, a9 (side
pull, left) normally makes the object move towards the left.
However, in the test data all objects hit the wall to their left,
preventing them to move along the y-axis. As a result the
prediction error in this dimension was particularly high for
a9. Similarly, a2 (front side push, left) normally results in
a backwards movement in addition to a rotation. However,
in the test data the rotation made the object contact the
wall which in turn blocked the movement along the x-axis,
causing a larger prediction error.

Breaking the errors down by object also helps further
understand the sources of large error (Fig. 9(a)). We observe
that the last two objects (cat food and bath toy) have a larger
overall error. Unlike the first three objects these objects do
not have a rectangular prism shape, making the bounding box
a less accurate representation of the object. As a result, we
qualitatively observed during data collection that tool actions
(which are relative to the bounding box) are less consistent in
the effects they have on these two objects with more complex
shapes. For instance, neither of these objects have a proper
top surface that allow pulling motions (a8−a10) to have the
intended effects. Similarly, a4 − a5 are relative to the front
edge on each side, whereas the cat food package does not
fill those parts of the bounding box. As a result these actions
most often fail in making contact with the object.

To further explore our observation that differences among
objects can be a source of error, we tried training regressors
with data from D1 for only one object and test it with data
from D2 for the same object (Fig. 9(b)). This resulted in
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Fig. 10. Accuracy of predicting whether an object will be graspable or
not after a tool action (shown in percentage), with different configurations
of training and testing datasets.

overall more accurate regressors, particularly for predicting
translational changes as compared to rotational changes.
Consistent with our earlier observation, the errors were still
relatively higher for objects with more complex shapes that
yield inconsistent changes in response to tool actions.

2) Grasp prediction accuracy: While predictive action
models can be used for planning specific motion trajectories
for an object, the focus in this paper is to make the object
graspable. Hence it is important to know if the predictive
model enables correct assessment of future object states in
terms of their graspability. To that end, we compared the
observed graspability of objects in our datasets with the
assessed graspability of predicted future states (computed
as described in Sec. III-G). Fig. 10 shows the accuracy of
such predictions for regressors trained in different ways, over
different test sets.

The accuracy is reasonable overall. We see that the pre-
diction errors of the regressors are reflected in the grasp
predictions; i.e., test cases with larger prediction error have
lower grasp prediction accuracy. We include an additional
analysis in which the regressors are trained with data from
four objects and tested on the fifth object, giving a relatively
high accuracy of 89%. This demonstrates the potential for
good transfer to new objects within the space of configura-
tions observed in the dataset.

3) Single action grasp creation: As discussed earlier with
reference to Fig. 5, in some cases an object that is not
graspable can be made graspable with a single action. While
our goal is to find a sequence of actions that can take an
object from any configuration to a graspable configuration
(discussed in the next section), we take a moment to char-
acterize ways in which a single tool action moves an object
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Fig. 11. Example trials from D1 in which the initial state s′ of the object
is not graspable and the final state is graspable and correctly predicted as
being graspable.

from an ungraspable configuration to a graspable one.
Fig. 11 shows three examples of before and after states

from trials in D1. Each trial has an s that is not graspable
and s′ that is graspable and correctly predicted to be so. We
observe three ways in which tool actions rescue objects from
ungraspable configurations:
• Fig. 11(a): By pulling an object towards the front edge

of the shelf, tool actions can create a graspable area
on objects that cannot be grasped when laid on a flat
surface (e.g., book).

• Fig. 11(b): By moving objects away from the side
surfaces of the shelf, tool actions can reposition objects
in a way that allows the robot’s bulky gripper to fit
around the object.

• Fig. 11(c): By rotating objects, tool actions can reposi-
tion objects in ways that expose graspable portions of
the object in the front side of the shelf enabling collision
free access to grasps on those portions.

C. Analysis of Planning Tool Action Sequences

In some configurations objects cannot be made graspable
with a single tool action. The planning approach described
in Sec. III-G targets such scenarios. Although the proposed
planning technique is computationally expensive for large
plan depths, we empirically found that (i) all configurations
that are initially ungraspable (in D1 and D2) have at least
one plan of depth=2 that is predicted to make the object
graspable, and (ii) the utility metrics used in our paper do
not favor longer plans over these two-step plans. Hence our
analysis was limited to two-step plans.

We first tested our planning approach on all ten configu-
rations in D2. Fig. 12(a) shows the number of one-step and
two-step plans: we see that only three configurations did not
have a one-step plan that resulted in at least one predicted
grasp. Out of the 100 possible two-step plans we saw that 10
to 30 had at least one potential grasp. Fig. 12(b) shows the
average number of grasps, considered as our metric for the
quality of an object configuration in terms of graspability, in
one-step and two-step plans. We see that two step plans tend
to have more grasps in the final state; however, the difference



Fig. 12. (a) Number of plans with one or two actions that have at least one
grasp; (b) average number of grasps and (c) average confidence (p(st)) in
plans with one or two actions for 10 test configurations (t1−t10, Fig. 13(a)).

is not high. Fig. 12(c) shows the average confidence for one-
step and two-step plans, which most of the time reduces with
more steps, as expected.

Table II shows the plans selected for the ten test con-
figurations (out of 110 candidates in the plan tree of depth
2) based on three different utility metrics: (i) solely based
on quality of the predicted configuration (i.e., number of
grasps g(st)), (ii) solely based on confidence (p(st)), and
(iii) based on the combined utility metric (u(st), Sec. III-G).
Although the three metrics can yield the same action plan,
plans chosen based on g(st) and p(st) are often different and
plans chosen based on u(st) is equivalent to one or the other.
In some configurations (t2, t10), two-step plans are favored
even though one-step plans exist (Fig. 12(a)).

TABLE II
PLANS CHOSEN BASED ON DIFFERENT METRICS.

test configuration u(st) g(st) p(st)

t1 a6 a4 a6
t2 a10, a4 a10,a4 a10, a6
t3 a8 a8 a8
t4 a8, a8 a8, a8 a8, a6
t5 a8 a8 a8
t6 a8, a8 a8, a8 a8, a8
t7 a6 a6 a6, a4
t8 a3, a6 a3, a4 a3, a6
t9 a6 a4 a6
t10 a3, a6 a6 a3, a6

Fig. 13(a) shows the execution of the plans chosen based
on u(st) in the ten test configurations. We see that most plans
result in the robot being able to grasp the object at the end.
In the first test that failed in execution (t1) the chosen one
step plan was intended to rotate the crayons but failed due
to the proximity to the shelf. When the robot was allowed
to re-plan during execution (Fig. 13(b)) it chose to repeat
the same action and this time succeeded to rotate the object
to a graspable configuration. In the second test that failed
(t4) chosen plan was intended to pull the object towards

t9: Bath toy

t1: Crayons

t3: Pencils

t5: Book

t7: Cat food

t2: Crayons

t10: Bath toy

t8: Cat food

t6: Book

t4: Pencils

initial state after first action after second action

a10

a6

a8

a8

a8

a8

a6

a3

a6

a3

a4

a8

a8

a6

a6

t1: Crayons

t4: Pencils

(a)

a6

a8 a6

a6
(b)

Fig. 13. (a) Action plans based on u(st) in 10 test configurations. The
grasp selected by the robot is also shown if the gripper does not preclude
seeing the final object state. Check marks indicate successful final grasp.
(b) Dynamic plans that were different from the original plans.

the shelf edge in two steps, but failed to have the expected
effect in the second step. When the robot was allowed to
re-plan during execution (Fig. 13(b)) it chose a different
action for the second step, but that action also failed to
have the intended effect. Note that both the original and the
dynamically generated plans for t4 are viable and are likely
to succeed some of the time. This experiment demonstrates
that plan executions are subject to uncertainty. This supports
the approach of dynamic re-planning during execution.

In the plans with successful executions, we see a variety in
the use of different tool actions. a8 (pulling object forward) is
the most preferred action for flat objects (book and pencils).
We observe uses of alternative actions to achieve similar
effects; for instance a3 and a4 for rotating the object; and a6
and a10 for pushing or pulling the object towards the right.

We also tested our planning approach on configurations in
D1 where no action made the object graspable in a single step
(shown as red in Fig. 5). There were 18 such configurations
in total, for three of the objects (pencils:6, book:11, cat
food:1). We saw that the object could be recovered with two-
step plans in all of these configurations. There was an average
of 7.4 two-step plans (pencils:14, book:5, cat food:8.2) and
the plans had an average of 2.7 potential grasps (pencils:11.5,
book:3.3, cat food:1.6).

V. DISCUSSION
Our results demonstrate an overall success in achieving

what we set out to do: using a simple tool to help grasp



objects in confined environments. Our method enables a
simple forward planning approach that effectively uses the
tool to reconfigure an object in very few steps (one or two
actions). We believe that part of this success can be attributed
to the design of our tool and our tool actions. Our tool had
a size and shape ideal for being used in confined spaces and
particularly unique in enabling pulling actions with the help
of friction forces. The tool actions were carefully designed
to avoid collisions with the shelf while being useful and
applicable to different objects in a range of configurations.

The idea of empirically modeling tool action effects
proved to be sensitive to the way in which multi-model re-
gressors are trained and tested. The problem was made more
challenging by (i) the testing data having different action
behaviors due to unseen configurations (e.g., objects hitting
walls), (ii) having multiple objects that behave differently
in the same situation, and (iii) uncertainty in the action
effects that can be drastically different (e.g., tipping over).
Nonetheless, the scale regression errors were not detrimental
on the robot’s ability to predict future graspability and find
productive tool action plans.

Our paper focused on using predictive models to recon-
figure a target object; however, the learned models can also
be used to reconfigure objects that act as clutter. In that case
the robot would explore plans that reconfigure the clutter,
then chose a plan that make the target object graspable,
for instance, by pushing clutter away from the object or
deeper into the shelf. This is a simple extension of the work
presented in this paper, but will likely require longer plans.

A more involved extension of our work would be to con-
sider exploration of tool action parameters instead of keeping
them fixed. In that case, the parameters would be used as
input to the regressors which could discover correlations
between input parameters and action effects. Unlike other
inputs to the regressor (i.e., object state), parameters would
not be observed during execution. Therefore, the planning
approach would need to be modified to intelligently select
action parameters to achieve the best effect.

VI. CONCLUSION

This paper explores the idea of using a simple tool to
reconfigure an object in confined environments so as to make
it graspable. We propose using a novel tool with a high fric-
tion tool tip that enables pulling actions as well as pushing
actions. Our approach involves learning to predict the change
in the continuous state of the object in response to pre-
defined tool actions, by training a multi-modal regressor with
experience data. We present a thorough analysis of different
components of our system, considering alternative regression
techniques and plan utility metrics. We demonstrate that our
approach enables a PR2 robot to pick up five different objects
from various configurations on a shelf.
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