
Efficient Programming of Manipulation Tasks by
Demonstration and Adaptation

Sarah Elliott1, Russell Toris2, Maya Cakmak1

Abstract— Programming by Demonstration (PbD) is a
promising technique for programming mobile manipulators
to perform complex tasks, such as stocking shelves in retail
environments. However, programming such tasks purely by
demonstration can be cumbersome and time-consuming as they
involve many steps and they are different for each item being
manipulated. We propose a system that allows programming
new tasks with a combination of demonstration and adaptation.
This approach eliminates the need to demonstrate repetitions
within one task or variations of a task for different items,
replacing those demonstrations with a much more time-efficient
adaptation procedure. We develop a Graphical User Interface
(GUI) that enables the adaptation procedure. This GUI allows
grouping, duplicating, removing, reordering, and repositioning
parts of a demonstration to adapt and extend it. We implement
our approach on a single-armed mobile manipulator. We eval-
uate our system on several test scenarios with one expert user
and four novice users. We demonstrate that the combination of
demonstration and adaptation requires substantially less time
to program than purely by demonstration.

I. INTRODUCTION

Robot Programming by Demonstration (PbD) is an ef-
fective way of programming manipulators and is widely
used in industrial settings where robots repeat programmed
actions thousands or millions of times. It is also a promising
technique for programming mobile manipulators in homes or
other task-oriented human environments such as retail stores,
warehouses, or service industry domains. The diversity and
dynamic nature of these environments will require end-users
to do a lot more programming. Hence PbD interfaces must
be simple enough for use by novice users and as efficient as
possible to minimize the user’s programming time.

However, even the simplest PbD systems that are currently
available (e.g., [2], [9], [12]) require at least one demonstra-
tion of the task in its entirety. If the task is long or complex,
providing such a demonstration can be cumbersome and
time-consuming. For example, consider a mobile manipulator
being programmed to stock shelves in a retail store. Existing
systems would require demonstrating how to handle each
item separately, as they might each need to be grasped from
a different point, placed to display a different side, and
positioned differently relative to other items next to or behind
it. Furthermore, most systems would require demonstrating
the end-to-end task going from an empty shelf to a fully-
stocked shelf, so that the robot can observe all variations
of the shelf and learn how its actions need to be different

1Paul G. Allen School of Computer Science and Engineering, University
of Washington, Seattle, WA 98195, USA.

2Fetch Robotics, Inc., San Jose, CA, 95131, USA.

in each case. As a result, programming a robot to stock all
items in a store could take days or weeks.

Instead, we propose to replace parts of such lengthy
demonstrations with a much more time-efficient adaptation
procedure, building on already demonstrated parts of a
repetitive task or transferring a demonstration provided for
one task to another similar task. In this paper we present
a simple PbD system in which manipulation actions are
represented as a sequence of poses that can be relative to
objects in the environment or a previously saved pose. We
develop a Graphical User Interface that allows users to group,
duplicate, remove, reorder, and reposition poses, as well as
change their reference frames, so as to adapt a demonstration
to fit a different part of a task or an entirely different task. We
evaluate our approach with an implementation on the single-
armed mobile manipulator Fetch using four different tasks.
We demonstrate that the proposed duplication+adaptation
procedure is much more efficient than demonstrating those
sub-tasks or tasks, both for an expert user and five different
novice users.

II. RELATED WORK

Programming by Demonstration (PbD), also known as
Learning from Demonstration (LfD), is a way of program-
ming robot behaviors [5], [3]. As the name suggests, the user
demonstrates the desired behavior to the robot and the robot
uses the demonstration to create a program. A majority of the
research under the PbD umbrella has focused on learning a
model of the robot’s behavior from multiple demonstrations
using different statistical representations (e.g., [4], [18], [7],
[6], [15]), with recent approaches that can capture complex
task structures (e.g., [14], [12]) or handle challenging task
dynamics (e.g., [10], [13], [16]). Some of the recent work
has focused on allowing users to program actions through a
single demonstration (e.g., [2], [9], [12]).

Recent work has also focused on issues related to al-
lowing everyday users to program robots [1], [8]. Several
works involve GUIs similar to the one developed in this
paper. For example, Alexandrova et al. present interactive
visualizations of actions that allow users to fix errors in
an action initialized from a single demonstration. Similarly,
Kurenkov et al. show that editing can improve upon purely
demonstrated programs [11]. In their study, participants
preferred demonstrating the program kinesthetically and then
editing it rather than programming purely with the GUI
or purely by kinesthetic demonstration. These works focus
on correcting errors encountered while programming rather
than adapting a previously programmed action for a new

(a)

(c)

(b)

(d)

Fig. 1: Example GUIs for industrial robots: (a) Kuka’s LWR,
(b) Universal Robots’s UR5, (c) ABB’s YuMi, (d) ReThink
Robotics’s Baxter. These interfaces have some common
elements with the GUI developed in this paper to support
adaptation of actions.

purpose. Most relevant to our work, Stenmark et al. recently
developed an intuitive programming interface for the Yumi
robot, providing editing functions for the purpose of re-using
previously created skills [17]. Their user study demonstrated
that non-expert users obtained better skills when they adapted
a skill made by an expert, instead of adapting a skill they
made themselves.

Note that many industrial robots are also programmed
with a combination of kinesthetic demonstrations and a GUI.
Example GUIs are shown for four different industrial robots
in Fig. 1. Many of these are highly complex and used by
experts. For instance the user manual for the Yumi program-
ming interface is 319 pages; the basic training documents for
the UR robot is 216 pages. In addition, most of these systems
are designed to do very specific tasks and might assume
templates of tasks to be programmed (e.g., pick-and-place,
arrange on a grid) rather than allow the user to program
arbitrary tasks.

III. APPROACH

A. Action Representation

Our work builds on the PbD system by Alexandrova
et al. [2]. In our system an action is a sequence of 6-
dimensional end-effector pose and corresponding binary
gripper state (open/closed). Each pose has a reference frame;
poses can be relative to (a) the robot’s base, (b) a landmark
in the environments, or (c) the pose preceding it. The key
difference in representation from the previous work is the
ability to use preceding poses as landmarks, allowing the
grouping of poses that are relative to the same environmental
landmark.

B. Demonstration

Actions are initialized with a single demonstration. At
the beginning of the demonstration, the robot perceives the
environment in order to detect task-relevant objects in its
workspace. These objects are referred to as landmarks. A
demonstration is given by physically moving the robot’s arm

to desired poses, possibly changing the gripper state, and
saving the pose through a verbal command. If the saved pose
is within a certain distance of one or more of the perceived
landmarks, it is automatically considered to be relative to
the closest of those landmarks. This means that the reference
frame of the pose is set to be that landmark. Otherwise the
default reference frame for a saved pose is the robot’s base.

C. Action Adaptation

Once an action is initialized, it can be adapted by the user
to meet the requirements of the task at hand. Actions can be
modified in the following ways.

• Poses in an action can be duplicated. When a pose is
duplicated, it is automatically added to the end of the
sequence.

• Poses can be deleted.
• The order of poses can be changed.
• The position and orientation of a pose (x, y, z and roll,

pitch, yaw values) can be modified.
• The reference frame of a pose can be changed.
In our implementation, these action modifications are done

through a Graphical User Interface (GUI). This GUI is
expressive enough to allow an action to be programmed
entirely through such adaptations of an action initialized
with a single arbitrary pose. The opposite is also possible.
Users can demonstrate an action and make no modifications
at all. Although these types of single-mode programming
may be preferable in some cases, our work focuses on the
potential benefits afforded by the combination of the two. We
refer to this approach as Programming by Demonstration and
Adaptation, or PbD+A in short form.

D. Action Execution

Once an action is programmed, it can be executed in
a new scene. Before an execution, the robot perceives the
environment to detect landmarks referenced in the action,
which might have been displaced since the demonstration.
Next it computes the absolute end-effector configurations for
poses in the action that are relative to landmarks, as well as
any pose that is relative to those poses. Next the robot uses
motion planning to determine a path that visits all steps of the
action in their new configuration. If a landmark is missing or
a pose has moved out of the robot’s reach, the robot cannot
execute the action and it indicates this to the user through
sound and a message on the GUI. Otherwise, it completes
the action by executing the motion plan and changing the
gripper state along the way as needed.

IV. SYSTEM

A. Platform

The robot platform used in this work is the Fetch robot
which is a single-arm mobile manipulator [19]. The Fetch has
a 7 degree of freedom (DOF) arm that can be manipulated
physically by a human while in the gravity compensation
mode. The arm has a 1-DOF gripper with parallel fingertips
that open to a max distance of 10 cm. For perception of

(c)(a) (b)
Fig. 2:
Elements of the
GUI that support
adaption of
programmed actions:
(a) right-click menu
for changing the
reference frame of a
pose, (b) arrows and
rings appear to drag
or rotate a pose, (c)
the list view in
which each pose can
be executed, copied,
edited, deleted or
hidden, using
buttons on the list
item.

objects the robot uses a Primesense Carmine 1.09 short-range
RGBD sensor mounted on the robot’s pan-tilt head.

B. Implementation

The backend implementation of our Programming by
Demonstration and Adaptation (PbD+A) system uses ele-
ments of PR2 PbD1 from the University of Washington.
The Fetch’s arm has 7 DOFs, so there are multiple joint
configurations the arm could adopt for a given end-effector
pose. We use the MoveIt2 software package for Inverse
Kinematics and motion planning. If the robot has detected
a surface in the environment then it checks for collisions
with the surface in order to avoid colliding with it during
execution.

Objects in the world are detected from RGBD sensor data
using the Rail Segmentation3 software package from Georgia
Tech. Objects are represented by the dimensions (length,
width, height) of the bounding boxes of segmented point
clouds on a tabletop. The reference frame is considered to
be at the center of the bounding box. The distance threshold
for a saved pose to be considered automatically relative to
an object is 40cm. Information about all objects which have
at least one associated pose is saved as part of the action.

When new information about the robot’s environment
is acquired, either before an execution or when requested
directly by the user, the system attempts to match objects
referenced in the demonstration in the newly observed en-
vironment. The similarity metric used is the L1-norm of the
dimensions of the objects. To be considered the same object,
the L1-norm of the dimensions must be less than 0.075. This
value was determined experimentally.

1wiki.ros.org/pr2 pbd
2moveit.ros.org
3wiki.ros.org/rail segmentation

C. Graphical User Interface

The GUI is a web browser interface implemented using
the Robot Web Tools4 collection of packages. It allows users
to observe and explore the current state of the action through
a visualization. The visualization includes the following
elements, some of which are illustrated in Fig. 2.

• Robot: The current configuration of the robot is shown
relative to the saved poses. When the user manipulates
the real robot, the visualization updates accordingly.
This helps to visualize the action in the robot’s 3D
workspace.

• Actions: The steps of an action are visualized with
transparent copies of the robot’s gripper, configured
according to their pose and the current poses of action
landmarks (i.e., detected objects). The grippers appear
orange if the poses they represent are reachable by the
robot and grey if they are not reachable. Grey arrows
connect consecutive poses together to indicate the order
of in which the poses will be visited.

• Objects and surface: If the robot has detected a surface
and objects in the environment, then these will also
appear in the visualization. Objects appear as green
boxes that reflect the dimensions of the bounding box
for the object. The surface is represented by a purple
rectangle.

In addition to the visualization, actions are also presented
in a list view (Fig. 2(c)). A pose can be selected by clicking
on either the gripper in the visualization or the list item in
the list view. This will highlight both the gripper and the list
item for that pose.

Users can perform the following operations using our GUI:

• Detect objects: This button causes the robot to point
its head forward and down to look for a surface with

4robotwebtools.org/

objects and run its perception algorithm. If the robot
detects a surface and objects, these will appear in the
visualization.

• Save pose: This button saves the current end-effector
pose and updates the visualization.

• Delete pose: This button, available on each item in the
list view, removes the pose from the action and updates
the visualization. It is also available from the menu that
appears when a pose is selected in the visualization.

• Copy pose: This button, available on each item in the
list view, duplicates a pose. The copy gets added to the
end of the list and the visualization is updated.

• Change pose: When a pose is selected in the visualiza-
tion, arrows and rings appear. By clicking and dragging
the arrows, the pose can be translated. Similarly, the
rings can be used to change its rotation.

• Change reference frame: The reference frame of a pose
can be changed by right clicking on its visualization.
A menu appears with possible frame options and the
current reference frame is denoted by an “x”.

• Reorder poses: The execution order of poses can be
changed by dragging and dropping the items in the list
view. This will also update the visualization.

The GUI can be accessed on a desktop computer or mobile
phone or tablet. On a mobile phone, the visualization of the
robot and the demonstrated poses will not appear, but the
list of poses and all of the buttons will be present. Using
a mobile phone is a convenient way for users to save and
delete poses while giving a demonstration.

V. EVALUATION

Our system was evaluated in four experimental settings
to illustrate the capabilities of our system compared to a
baseline system that only allows basic GUI adaptations.
These scenarios were motivated by the problem of picking
items from or stocking items on shelves in a warehouse or
retail setting.

A. Experimental Setup

The scenarios considered in this paper involve manipulat-
ing multiple objects on a surface as well as depositing them
in a bin. The main objects are boxes that are 7.5 cm in length,
6.5 cm in width and 7 cm in height. We also use a bath toy
of similar scale for testing transfer of tasks from one object
to another. The surface is 74.5 cm in height and the bin is
47 cm in length, 32 cm in width and 20 cm in height. The
bin rests on a surface (of another robot) that is 36.5 cm in
height. Fig. 3 shows this configuration.

B. Tasks

We use 4 different scenarios to evaluate the systems. Each
scenario has a source action and a target action. The source
and target actions each have a start state and goal state. For
each scenario, the user programs the source action and then
that action is available for use in programming the target
action.

Fig. 3: Experimental setup with the table and objects in
front of the robot and a bin to its side.

start goal

ta
rg

et
 a

ct
io

n

(b)

so
ur

ce
 a

ct
io

n
ta

rg
et

 a
ct

io
n

start goal

ta
rg

et
 a

ct
io

n

ta
rg

et
 a

ct
io

n

 1 2

 2 1

(a)

so
ur

ce
 a

ct
io

n

(c)

so
ur

ce
 a

ct
io

n

(d)

so
ur

ce
 a

ct
io

n

Fig. 4: Source and Target actions for each scenario.

Scenario 1: Fig. 4 (a)
Source Action: One box starts out on the surface in front
of the robot. The goal is for the robot to move the box into
the bin at its right side. The box can be deposited anywhere
inside of the bin. Target Action: Three boxes start out on
the surface 10 cm apart from each other. The goal is for the
robot to move all of the boxes into the bin at its right side.
The boxes can be deposited anywhere inside of the bin.

Scenario 2: (Fig. 4 (b))
Source Action: One box is on the surface. The robot needs
to move the box into the bin on its right. This is the same
as the source action for Scenario 1. Target Action: The bath
toy is on the surface. The goal is to move the bath toy into
the bin to the right of the robot.

Scenario 3: (Fig. 4 (c))
Source Action: Three boxes start out on the surface 10 cm

apart from each other. The robot moves the leftmost box
10 cm to the left. Then it moves the middle box and then
the rightmost box. The result is that all of the boxes are 10
cm to the left of their starting positions.
Target Action: For the target action, three boxes start out
on the surface 10 cm apart from each other. The goal is
for the robot to move each of the boxes 5 cm to the left of
their starting positions.

Scenario 4: (Fig. 4 (d))
Source Action: Two boxes start out on the surface 10 cm
apart from each other. The robot moves the leftmost box
into a bin on its left. Then it moves the rightmost box to a
bin on its right.
Target Action: Two boxes start out on the surface 10 cm
apart from each other. For the target action, the goal is to
first move the rightmost box into the bin on the right and
then move the leftmost box to the bin on the left.

C. Experimental Procedure

We compare our PbD+A system to a baseline system
that allows only minimal modification of an action after the
demonstration is complete. The baseline simply allows users
to add and delete poses from the action’s sequence. Some
of these differences are visible in Fig. 5, which shows the
GUIs of our system and the baseline system.

One expert user programmed performed all four program-
ming tasks described in Sec. V-B, over three trials. Five non-
expert users programmed the actions in Scenario 1, followed
by Scenario 2. All five non-expert users were familiar with
Robotics and had varying levels of experience with the Fetch
robot. However they were new to our system.

Participants performed Scenario 1 followed by Scenario 2,
using both the baseline and our system in counterbalanced
order. Prior to programming actions in the two scenarios,
participants performed an exercise to familiarize themselves
with the robot and the different programming interfaces. First
they used the baseline system to program the robot to wave
its arm. Then they used the baseline system to program a
waving action in the opposite direction, with the arm now
positioned on the opposite side of the robot’s body. Next
they were asked to program the same two actions with
the PbD+A system. Users were encouraged to explore the
features of both systems during this time. Once participants
felt comfortable with the tools, we moved on to the two
scenarios.

For each scenario, we briefly describe how the target
action can be programmed using the baseline and the PbD+A
system using demonstrations and adaptations. After com-
pleting the two scenarios, the non-expert users completed
a survey about their experience.

D. Experimental Results

We compare the two conditions (baseline vs. PbD+A)
quantitatively in terms of the time it took to program each
action, and qualitatively, in terms of the interaction steps used
to program the actions. Table I summarized the experimental

(a)

(b)

Fig. 5: (a) Baseline interface allowing minimal editing (b)
Our PbD+A system allowing extensive modifications.

results for the expert programmer on four scenarios and
novice programmers on the first two scenarios. Overall,
we observe that programming the target task with PbD+A
is much faster than programing it by demonstration, both
for novice and expert users, across different tasks. In the
following we go through the different tasks one by one
and characterize how adaptation takes advantage of the
similarities in the source and target actions to achieve these
efficiency gains.

1) Scenario 1:
a) Baseline: Using the baseline system, programming

the source action (placing one object in the bin) for this
scenario involves the following steps:

1) DEMO: Move arm to center gripper above 1st object
2) DEMO: Open gripper
3) DEMO: Move arm so that object is inside gripper
4) DEMO: Close gripper
5) DEMO: Move gripper above bin
6) DEMO: Open gripper

On average, the non-expert users took 124 seconds to suc-
cessfully program the source action. The expert user took an
average of 42 seconds over 3 trials.

To program the target action (placing three objects in the
bin), it is possible to build on the provided source action,
even in the baseline system. The source action will deposit
the first object in the bin. Additional demonstrations must
be provided in order to deposit the other two objects into
the bin. The additional demonstrations add new poses to the
action. Hence, the process of programming the target action
involves the following steps:

1) DEMO: Move arm to center gripper above 2nd object
2) DEMO: Open gripper
3) DEMO: Move arm so that object is inside gripper
4) DEMO: Close gripper
5) DEMO: Move gripper above bin
6) DEMO: Open gripper
7) DEMO: Move arm to center gripper above 3rd object
8) DEMO: Open gripper
9) DEMO: Move arm so that object is inside gripper

10) DEMO: Close gripper
11) DEMO: Move gripper above bin
12) DEMO: Open gripper
Although it is possible to build on the source action, it is still
necessary to make nearly the same physical demonstration
two more times. Non-expert users on average spent 245.8
seconds programming the target action. When performed the
an expert user, this process took 88.3 seconds on average over
3 trials.

b) PbD+A: Using our system, the programming of the
source action is the same as for the baseline system in this
case. It took non-expert users 131.0 seconds on average to
program the source action and the expert user 46.3 seconds
on average over 3 trials.

Our system also allows the user to build on the source
action, however no additional demonstrations are necessary.
Instead, modifications are made to the source action using the
GUI. Relevant poses are copied and then moved to locations
corresponding to the other two objects. This process involves
the following steps:

1) MOD: Copy each of the poses from the source action
2) MOD: Change the reference frames of the 2nd, 3rd

and 4th copies to be relative to the poses that precede
them. This has the effect of grouping the first four poses
together. These are the poses for picking up the object.
The poses for dropping the object in the bin do not need
to move.

3) MOD: Move the first copied pose 10 cm to the right
(i.e., above the 2nd object). The other poses that are
relative to this one will also move.

4) MOD: Copy each of the poses from the source action
5) MOD: Change the reference frames of the 2nd, 3rd and

4th copies to be relative to the poses that precede them
6) MOD: Move the first copied pose 20 cm to the right

(i.e., above the 3rd object).
In this case, the poses from the source action can be copied
and then relocated as a group in order to avoid making mul-
tiple similar demonstrations. Our system replaces multiple

Non-Expert
Users Expert User

Scenario
&
Action

System
#
DEMO

#
MOD

Avg.
Time
(s)

Std.
Dev

Avg.
Time
(s)

Std.
Dev

1, source Baseline 6 0 124.0 30.3 42.3 7.5
1, target Baseline 12 0 245.8 43.0 88.3 9.9
1, source PbD+A 6 0 131.0 42.8 46.3 5.8
1, target PbD+A 0 6 190.6 37.0 29.0 4.6
2, source Baseline 6 0 124.0 30.3 42.3 7.5
2, target Baseline 6 0 118.6 23.2 52.3 4.0
2, source PbD+A 6 0 131.0 42.8 46.3 5.8
2, source PbD+A 0 2 56.6 11.5 14.0 3.0
3, source Baseline 21 0 103.7 9.1
3, target Baseline 21 0 90.0 9.5
3, source PbD+A 7 6 68.7 4.2
3, target PbD+A 0 2 32.0 3.0
4, source Baseline 12 0 89.0 6.6
4, target Baseline 12 0 89.3 7.6
4, source PbD+A 12 0 87.3 6.1
4, target PbD+A 0 1 18.7 2.1

TABLE I: Time spent programming with baseline versus the
PbD+A system. Types of interactions used for programming
are characterized by the number of demonstration steps
(DEMO) or modification steps (MOD).

instances of physically moving the robot’s arm with mouse
clicks. When performed by non-expert users, this process
took on average 190.6 seconds, which was a substantial
improvement over the 245.8 second taken in the baseline.
For the expert user this process took 29 seconds on average
over 3 trials, which was also significantly lower than the 88.3
seconds taken in the baseline.

2) Scenario 2:
a) Baseline: The source action here is the same as the

one for the first scenario, which non-expert users were able
to perform in an average of 124 seconds and the expert user
performed in an average of 42 seconds.

In this case, the baseline approach cannot easily make use
of the source action when programming the target action. The
bath toy manipulated in the target action requires a slightly
lower grasp than the box manipulated in the source action.
It is necessary to start from scratch and demonstrate moving
the bath toy into the bin. Using the baseline approach, non-
expert users were able to program this target action in 118.6
seconds on average. When performed by the expert user, this
process takes 90 seconds on average over 3 trials.

b) PbD+A: Once again, the source action is the same
as in the first scenario, which non-expert users programmed
in 131.0 seconds on average. The expert was able to program
the source action in 42.3 seconds on average.

With our system, users were able to build on the source
action to program the target action, and once again no
additional demonstrations are necessary. In this case, the
poses can be easily repositioned to grasp the bath toy, which
requires a sightly lower grasp. Non-expert users were able

to program the target action in an average of 56.6 seconds
and the expert user took an average of 14 seconds.

3) Scenario 3:
a) Baseline: The expert user was able to program the

source action in an average of 103.7 seconds. In this case,
the baseline approach cannot build on the source action to
program the target action. Instead it is necessary to start
from scratch and demonstrate moving each of the three
objects individually. The result is giving 3 very similar
demonstrations. When performed by an expert user, this
process takes 90 seconds on average over 3 trials.

b) PbD+A: With our system, programming the source
action took the expert user 68.7 seconds on average. This
was much faster than programming the source action with
the baseline system because our system allowed the user to
only demonstrate picking up one object and then copy the
resulting pose to make the whole action.

To program the target action the user was able to make
use of the source action, and once again no additional
demonstrations are necessary. In this case, the poses can be
modified to move the objects over only 5 cm instead of 10
cm. One way to do this is to group the poses for moving a
object together and then shift them all over by 5 cm. When
performed by an expert user, this process takes 32 seconds
on average over 3 trials.

4) Scenario 4:
a) Baseline: The expert user spent 89 seconds on

average programming the source action. In this case, the
baseline approach does not build on the source action to
create the target action. When performed by the expert user,
the target action took 89.3 seconds to program on average
over 3 trials.

There is also a more complicated way to take advantage
of the source action by deleting the poses associated with
the leftmost object all together. This leaves an action that
simply moves the rightmost object into the bin on the right.
Then it is necessary to add to the action by demonstrating
moving the leftmost object into the bin on the left. When
performed by an expert user, this process takes 41.3 seconds
on average over 3 trials.

b) PbD+A: With our system, users can make use of
the source action to create the target action, and once again
no additional demonstrations are necessary. In this case, the
poses can be easily reordered to move the rightmost object
before the leftmost object. When performed by an expert
user, this process takes 18.7 seconds on average over 3 trials.

Overall, we found that our system reduced the time it took
to program the robot in the the 4 scenarios described above.
Programming the target actions took novice users 69% more
time (58.2 seconds) on average when using the baseline
system than when using our PbD+A system. The expert user
was able to realize even more time savings, taking on average
260% more time (56.6 seconds) to program target actions
using the baseline, compared to the PbD+A system. While
the expert user was consistently faster than any of the novice
users, these numbers show that users are expected to multiply

Source Action
Baseline
PbD+A

5

4

3

2

1

0Source Action Target #1 Target #2

Fig. 6: The perceived difficulty of programming the source
and target actions on a 5-point Likert scale (5:very difficult,
1:very easy) in Scenarios #1 and #2 with different systems.

their efficiency gains when they become experienced using
the PbD+A system. This also suggests that the learning curve
for the PbD+A system might be steeper than that of the
baseline system.

E. Survey Results

All five of the participants agreed that the baseline system
was easier to learn and more intuitive. However, 4 out of
5 participants also said that PbD+A was easier to use once
learned. In addition, all of the participants stated that PbD+A
was the most expressive and most efficient out of the two
systems. This indicates that PbD+A has a non-zero barrier to
entry, but that users found it to be valuable after becoming
familiar with it.

As shown in Fig. 6, participants found adapting the
previously programmed action using PbD+A slightly easier
than starting from scratch using the baseline.

Open-ended user feedback indicated that people preferred
PbD+A for programming “complicated” tasks or tasks with
“multiple objects”. On the other hand, they preferred to
program “easier”, “shorter” or “smaller” tasks with the
baseline system. This indicates that there is some overhead
associated with using the PbD+A system that users wish
to avoid when programming less complicated tasks. Users
also commented that the usability of the interface could be
improved. One user said that “It was hard to remember all
of the things I could do with the interface”, indicating that
the design of the interface could be improved to be more
discoverable and potentially reduce mental load on the user.

VI. DISCUSSION

This work demonstrates that adapting an existing action
can be much faster than demonstrating a new action in
some cases. The main contribution of our work is an action
representation that supports intuitive adaptations as well as
a GUI to enable novice users to perform such adaptations.

Although our adaptation GUI was successful in enabling
large efficiency gains, it could be improved in many ways.

Some users commented that features of the GUI were diffi-
cult to remember and this difficulty may have contributed to
the difficulty of programming using our system. This might
not be an issue for repeat users, unlike the first time users in
our study. In general, we believe that reducing the amount
of repetitive physical demonstration necessary to program a
robot will improve user experiences.

Our system could also be extended in several ways. The
current PbD+A system supports programming only arm
movements. However, the underlying software implemen-
tation is extensible so that an action could include head
and base movements as steps in the action. In addition, the
perception capabilities of the current system are limited to
tabletop objects, which are represented by simple bounding
boxes. Better object matching or recognition using color and
more detailed shape information would make our system
more robust and generalizable.

We observed that one result of adapting demonstrated
actions is that the resulting action can be more consistent.
When programming an action with repeated sub-tasks en-
tirely by demonstration, there can be unwanted variation
between the user’s demonstration of those sub-tasks. Our
system can prevent this because sub-tasks are essentially
copies of each other.

When programming long, complex tasks with PbD+A,
a significant amount of time is spent on considering how
to structure the task. We hypothesize that many everyday
tasks share a common structure or have similar sub-tasks.
In the future, we would like to discover common types of
robot tasks and create templates that have an appropriate,
functional outline for the task. This could allow users to
program actions purely by adaptation, using a template as
the starting point.

VII. CONCLUSION

We propose a system that combines Programming by
Demonstration with the ability to adapt the demonstrated
action using a Graphical User Interface. We refer to this
hybrid approach as PbD+A. In this system, a demonstration
is a sequence of 6D poses that can be relative to objects in
the environment or other poses. Once an action is initialized
through a single demonstration, it can be modified using the
GUI designed for action adaptations. The GUI allows for
editing the position and orientation of individual poses in
the action as well groups of poses. A user can also copy,
remove and reorder poses within in action.

The advantages of this approach over existing approaches
is that it does not require the user to make multiple demon-
strations of similar parts of a task. We describe an imple-
mentation of the system using a Fetch robot and evaluate
the system by having 1 expert and 5 novice users program
the robot to manipulate a set of objects on a surface. We
demonstrate that PbD+A avoids repeated demonstrations of
similar sub-tasks and therefore reduces the time needed to
program complex tasks. PbD+A has the potential to allow
robot programmers to more efficiently program a wide range
of tasks, especially those with repetitive sub-tasks.

ACKNOWLEDGMENTS

This work was supported by Fetch Robotics and the Na-
tional Science Foundation Award IIS-1552427 “CAREER:
End-User Programming of General-Purpose Robots.”

REFERENCES

[1] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd
Thomaz. Trajectories and keyframes for kinesthetic teaching: A
human-robot interaction perspective. In ACM/IEEE international
conference on Human-Robot Interaction, pages 391–398, 2012.

[2] S. Alexamdrova, M. Cakmak, K. Hsaio, and L. Takayama. Robot
programming by demonstration with interactive action visualizations.
In Robotics: Science and Systems (RSS), 2014.

[3] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robotics and
Autonomous Systems, 57(5):469–483, 2009.

[4] Christopher G Atkeson and Stefan Schaal. Learning tasks from a single
demonstration. In Robotics and Automation, 1997. Proceedings., 1997
IEEE International Conference on, volume 2, pages 1706–1712, 1997.

[5] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal.
Robot programming by demonstration. In Springer Handbook of
Robotics, pages 1371–1394. Springer, 2008.

[6] Sylvain Calinon and Aude Billard. Statistical learning by imitation
of competing constraints in joint space and task space. Advanced
Robotics, 23(15):2059–2076, 2009.

[7] S. Chernova and M. Veloso. Confidence-based policy learning from
demonstration using gaussian mixture models. In Intl. Joint Conf. on
Autonomous Agents and Multiagent Systems (AAMAS), 2007.

[8] Sonia Chernova and Andrea L Thomaz. Robot learning from human
teachers. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 8(3):1–121, 2014.

[9] Christian Groth and Dominik Henrich. One-shot robot programming
by demonstration using an online oriented particles simulation. In
Robotics and Biomimetics (ROBIO), 2014 IEEE International Confer-
ence on, pages 154–160, 2014.

[10] Seungsu Kim, Elena Gribovskaya, and Aude Billard. Learning
motion dynamics to catch a moving object. In 2010 10th IEEE-RAS
International Conference on Humanoid Robots, pages 106–111, 2010.

[11] A. Kurenkov, B. Akgun, and A. L. Thomaz. An evaluation of gui
and kinesthetic teaching methods for constrained-keyframe skills. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[12] A. Mohseni-Kabir, C. Rich, S. Chernova, C. L Sidner, and D. Miller.
Interactive hierarchical task learning from a single demonstration. In
ACM/IEEE Intl. Conf. on Human-Robot Interaction, 2015.

[13] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and
generalize striking movements in robot table tennis. The International
Journal of Robotics Research, 32(3):263–279, 2013.

[14] S. Niekum, S. Chitta, A.G. Barto, B. Marthi, and S. Osentoski.
Incremental semantically grounded learning from demonstration. In
Robotics: Science and Systems, volume 9, 2013.

[15] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and
generalization of motor skills by learning from demonstration. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2009.

[16] J. Schulman, J. Ho, C. Lee, and P. Abbeel. Learning from demonstra-
tions through the use of non-rigid registration. International Journal
of Robotics Research, 2013.

[17] M. Stenmark, M. Haage, and E.A. Topp. Simplified programming of
re-usable skills on a safe industrial robot: Prototype and evaluation.
In ACM/IEEE Intl. Conf. on Human-Robot Interaction, 2017.

[18] A. Ude, C. G. Atkeson, and M. Riley. Programming full-body move-
ments for humanoid robots by observation. Robotics and Autonomous
Systems, 47:93–108, 2004.

[19] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich. Fetch
& freight: Standard platforms for service robot applications. In IJCAI
Workshop on Autonomous Mobile Service Robots, 2016.

