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Abstract— Programming robots to do manipulation tasks
requires users to specify relevant perceptual landmarks, which
include objects, parts of objects, or parts of the workspace.
While many techniques have been developed for object detec-
tion, few are designed to detect arbitrary parts of objects or
of the workspace. This paper presents CustomLandmarks, a
flexible tool that lets non-roboticists build their own perceptual
detectors for many kinds of landmarks. The system components
include a simple 3D interface for specifying landmarks, a novel
representation for landmarks, and an algorithm for locating
landmarks in new scenes. We evaluate the system’s detection
performance through systematic experiments and by using the
system to aid a PR2 robot with several manipulation tasks.
Finally, we present a user study showing that novices to the
system are able to understand and use CustomLandmarks
quickly, creatively, and effectively.

I. INTRODUCTION

A robot’s ability to perform useful manipulation tasks
strongly depends on its ability to robustly perceive task-
relevant “landmarks,” i.e., parts of objects or the scene
relevant for the task. Programming robots to do manipulation
tasks typically entails the development of custom, task-
specific perception software. Adjusting such software to
minor task modifications often require additional labor from
experts in robotics or computer vision. While researchers
have tried to lift that burden by developing general-purpose
object detectors, these advancements are not designed to
detect parts of objects or of the scene. Another approach
is to attach visual markers that the robot can easily locate
(“fiducials”) to parts of the scene. However, attaching mark-
ers to all landmarks is not always possible or desirable, such
as when the landmark’s position can frequently change.

In this paper, we address the challenge of enabling non-
expert, novice users to specify arbitrary perceptual land-
marks. Having solutions to this problem could make manip-
ulation task programming faster and cheaper. To that end, we
introduce CustomLandmarks, a system that lets users define
partial 3D models of landmarks from sensor data and locate
them in new scenes. A key contribution of our system is
its representation of a landmark, which captures not only
its geometry, but also nearby space that is expected to be
empty. This representation is flexible and can be leveraged
in creative ways. For example, to visually check whether
the robot has successfully grasped a thin, lightweight object,
a user can create a landmark of the robot’s gripper with
a region of empty space beneath it and program the robot
to search for this landmark. We also present an algorithm
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for locating these landmarks that behaves predictably and is
simple for users to understand.

The landmark representation requires users to adopt a
different way of thinking about object and workspace de-
tection, and a natural question to ask is whether novice
users are capable of using landmarks in this way. A second
contribution of our work is to show, through a user evaluation
of CustomLandmarks, that users are capable of using the
system in non-obvious ways after minimal training.

In the rest of this paper, we first discuss related work. In
Section III, we describe the representation of a landmark and
give an algorithm for locating them in new scenes. Section IV
characterizes the performance of the system on a variety of
case studies. We also demonstrate how we used the system
to perform a variety of manipulation tasks on a PR2 robot in
Section V. Finally, Section VI presents the design and results
of our user study.

II. RELATED WORK

Our work presents an interactive system for defining visual
3D landmarks for manipulation. In this section, we relate
our work to past research on automatic vision systems
for manipulation, user-guided perception, and landmarks for
programming by demonstration.

A. Object detection and pose estimation

Although the landmarks represented by our system are
not limited to objects, object detection is an important and
closely related area of research, with a vast body of literature
behind it. Most techniques compute alignments between two
point clouds by repeatedly matching 3D features sampled
from the point clouds using different features or speed
optimizations [1], [2], [3]. Our approach differs in that our
landmark representation also specifies areas of empty space
around the point cloud. This allows users to make distinctive
landmarks out of otherwise generic point cloud segments.
Many systems require full 3D object models as input, either
from CAD models or from a scan of the object [4], [5].
This can improve detection performance but make the system
harder to use and deploy. Because usability is one of the
primary goals of our research, we only record object models
from a single viewpoint.

Localizing landmarks can also be viewed as an object
recognition or representation learning problem, which has
seen major progress in recent 2D computer vision re-
search [6]. However, these systems recognize only a prede-
fined set of objects and require large amounts of training data
to work well, which non-experts might not have the time or



ability to assemble. Additional work has gone into learning
representations of 3D shapes using deep neural networks [7],
[8]. These representations could be used to compare sam-
pled volumes from the scene to a landmark. However, the
current resolution of these voxel grid representations (up to
32 × 32 × 32 voxels) may be too limited to represent most
landmarks. Another approach is to use these representations
to find correspondences between the landmark and the scene
as part of a larger detection framework [9].

B. Vision for manipulation

One of the most common tasks for robot manipulation is
grasping. To this end, researchers have developed different
techniques for inferring grasp points using vision. Many
approaches use probabilistic models [10], [11], including
neural networks [12], [13], [14]. All of these approaches are
specifically designed for the purpose of grasping objects and
cannot be applied to other perception tasks such as locating
parts of the workspace.

C. User-guided vision

Our approach uses human input to create landmarks. Other
researchers have looked at how robots can learn about object
parts from human demonstrations. For example, Hsaio et
al. explored how robots can learn how to grasp objects
by comparing them to objects grasped by a teleoperator in
simulation [15]. Herzog et al. extended this approach by
inferring grasp templates from demonstrations [16].

Outside of robotic manipulation, researchers have inves-
tigated using human input to aid with vision tasks. In
particular, a common vision task that makes use of user input
is interactive image segmentation, in which the foreground of
a 2D image is separated from the background [17], [18]. This
approach could be used to define landmarks from a 2D image
of the scene. However, landmarks representing parts of the
workspace may frequently appear to be the in background
of an image, so most techniques for background subtraction
are not likely to work.

D. Landmarks for programming by demonstration

In Section V, we show how our system can be used in
conjunction with programming by demonstration (PbD). A
widely used technique, PbD ships with robots like Kuka’s
LWR, ABB’s YuMi, or Rethink’s Baxter. Previous research
on PbD has not focused on scene understanding, and has
instead used fiducials [19], [20], marker-based motion cap-
ture [21], or simulated environments [22]. Others have used
limited or special-purpose perceptual systems such as object
detectors on flat, uncluttered tabletop surfaces [23], [24]. Our
work improves on the perception capabilities of such PbD
systems by detecting landmarks in arbitrary scenes.

III. CUSTOMLANDMARKS

CustomLandmarks is a system for specifying and locating
3D landmarks from RGBD point cloud data. The system con-
sists of three key components: the landmark representation,
a user interface for creating landmarks, and an algorithm for
locating landmarks in new scenes.

(a) (b) (c) (d)✓ ✗

Fig. 1: An example that illustrates custom landmark specifi-
cation and search. (a) A landmark representing the top left
corner of a flat vertical area of the robot’s workspace (e.g.,
a plastic divider) is selected by drawing a box around the
corner. The top and left halves of the box are empty space.
(b) A close-up view of the landmark. The shaded region
represents the captured point cloud. (c) The corner landmark
matches well with the corner of another divider. (d) However,
it will not match well when aligned with the top middle of
the divider. Although all the points of the landmark (shaded
region) match well with the divider, part of the scene intrudes
upon the empty space of the landmark box.

A. Landmark representation

Our system represents landmarks with a point cloud,
which captures the shape of the landmark, as well as a box
that surrounds the point cloud. The boundaries of the box
specify the region of empty space around the landmark that
is expected be unoccupied. Fig. 1 illustrates the landmark
representation and use of empty space, and Section IV
explores the consequences of this representation in detail.

B. User interface

The user interface for creating landmarks shows a point
cloud view from the robot’s depth sensor, as well as a 3D
box-shaped selector, with controls to set its position and
dimensions. A screenshot of the box selector is shown in
Section VI, Fig. 7. With the landmark placed in the robot’s
view, the user moves and resizes the box to surround the
landmark of interest, potentially including margins of empty
space on the side. When the landmark is saved, the system
records to a database the subset of the scene within the
box, as well as the pose and dimensions of the box. For
convenience, the system also saves the entirety of the scene,
so that the landmark’s box can be edited offline using the
same scene. We chose to make the selector shaped like a
box and aligned with the base of the robot for simplicity
to the user and to the implementation. However, a more
advanced interface could be used to define an arbitrary shape
and orientation for the landmark. The landmark is captured
from a single view from one or more point clouds, and does
not include color information. In our implementation, we
fused five separate point cloud readings from the same static
scene to reduce noise in the data.

C. Landmark search algorithm

To make use of custom landmarks, we need a way of
localizing them in a new scene. We first formally describe
the inputs and outputs. A point p is a location vector p =
(px, py, pz) and a scene S is simply a set of points. A
landmark ` is a tuple (P,B), where P is a set of points



Algorithm 1: FindLandmark
Input : scene, landmark, miscellaneous parameters
Output: a list of aligned landmarks in the scene, or

empty list if not found
1 crop scene;
2 downsample scene using a voxel grid;
3 samples = sample points from scene using a voxel grid,

leaf size of 1/3 of the landmark’s dimensions ;
4 candidates = [];
5 for (sample in samples) {
6 c = copy of landmark;
7 move c such that c.cloud is centered on sample;
8 c = run ICP to align c.cloud with scene;
9 c.error = CandidateError (c, scene);

10 add c to candidates;
11 }
12 remove all candidates that do not have the lowest error

within a certain radius (non-max suppression);
13 output = {c ∈ candidates | c.error < threshold};
14 return output;

(i.e., points in the point cloud selected by the user) and B
represents a box, specified by a 6-dimensional pose and a
3-dimensional size vector.

Our search algorithm takes as input a scene S, represented
by the complete point cloud captured before an execution,
and a landmark ` to be localized in that scene. It outputs a set
of landmarks O, where each landmark `o ∈ O is potentially
an instance of the input landmark ` in the scene S.

Pseudocode for the algorithm is given in Algorithm 1.
First, we crop and downsample the scene according to
application parameters.1 Then, we sample scene points and
initialize an instance of ` at each sampled point. The sam-
pling is done by downsampling the scene again using a voxel
grid, which ensures that the entire scene is systematically
searched. The leaf size of this voxel grid is set to be a fraction
of the dimensions of the landmark (we found 1/3 to be a
good value). Next, we run the iterative closest point (ICP)
algorithm [25] to align the landmark’s point cloud P with S,
which produces a modified landmark `′. For each landmark
`′, we compute an error metric (Algorithm 2) using `′ and
S. We then perform non-max suppression so that we do not
produce duplicates of the same result. Finally, we filter the
results by thresholding on the error metric.

The error metric (Algorithm 2) can be thought of as
summing two measurements of error. The first measurement
is of how well the landmark’s shape matches with the scene,
while the second is of how much of the scene intrudes on
the empty space in the landmark’s box. Formally, the first
measurement is the sum of the distances between points on

1 For this paper, the scene was cropped to a volume in front of the robot
roughly equal to the reach of its arms. The scene was downsampled to a
leaf size of 1 centimeter. The non-max suppression radius was computed to
be half of the longest dimension of the landmark. We varied the threshold
for our error metric for experimental purposes but generally use a value of
0.75 centimeters.

Algorithm 2: CandidateError
Input : scene, candidate landmark
Output: error score

1 error = 0;
2 denominator = 0;
3 croppedScene = scene cropped to candidate.box;
4 visited = [];
5 for (scenePt in croppedScene) {
6 candidatePt = nearest point in candidate to scenePt;
7 error += distance between scenePt and candidatePt;
8 denominator += 1;
9 add candidatePt to visited;

10 }
11 for (candidatePt in candidate.cloud) {
12 if (candidatePt not in visited) {
13 scenePt = nearest point in scene to candidatePt;
14 error += distance between scenePt and

candidatePt;
15 denominator += 1;
16 }
17 }
18 return error / denominator;

the landmark and their nearest points in the scene (lines 11-
17). The second measurement is the sum of the distances
between points of the scene (within the landmark box) and
their nearest points on the landmark (lines 5-10). Adding a
margin of empty space around the landmark helps eliminate
false positive matches. If scene points are found where there
is expected to be empty space, then they will increase the
mean error, since the nearest points on the landmark are far
away. This process is illustrated in Fig. 1(c) and 1(d).

IV. CASE STUDIES

In this section, we show how we used CustomLandmarks
for 15 separate tasks and quantify the performance of our
landmark search algorithm.

A. Non-object landmarks

CustomLandmarks can be used to model a variety of non-
object landmarks. Below, we describe five categories of such
landmarks and provide examples of how they can be used.
Fig. 2 illustrates these examples.

1) Parts of an object: Sometimes it is helpful to model
just part of an object as opposed to the entire object. For
example, in a stack of bowls, only the rim of the top bowl
may be visible, especially if the bowls are located above
eye level on a kitchen shelf. For this case, we created a
landmark of the bowl rim, which allows us to locate the top
bowl (Fig. 2a).

Multiple objects may share an identical part. For example,
researchers have developed 3D-printed adaptors that robots
can securely grasp [26]. These adaptors can be attached to
many kinds of tools, including non-rigid tools like feather
dusters that would be hard to model in 3D. We created
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Fig. 2: Scenes and landmarks described in the case studies of Section IV-A. Five categories of landmarks are illustrated
above: object parts, workspace parts, emptiness, hole shapes, and extra specificity. For each case study, we show one of
the scenes we evaluated and the landmark or landmarks involved. The scenes also show examples of detections our system
found, shown with green boxes.

a landmark of one of those adaptors to locate the tools
(Fig. 2b).

Finally, users can specify parts of objects that serve as
grasp points. Finding multiple grasp points is helpful because
some parts of the object may be out of the robot’s reach.
Fig. 2(c) shows how we used a small segment of a tripod to
find multiple grasp points on the tripod.

2) Parts of the workspace: Landmarks can also represent
parts of the scene or of large objects. Examples include the
handles of a drawer or the top of a chair (Fig. 2e, g). We
also made a landmark of a wall mount for a tool to help a
robot hang a tool in an available space (Fig. 2d).

Other workspace landmarks can serve as anchor points for
the rest of the workspace. For example, on a mockup of a
control panel, we localized the buttons, which are too flat to
be landmarks themselves, by creating a landmark of a nearby
prominent feature—in this case, a large dial (Fig. 2f).

As with objects, it can be useful to locate just part of the
workspace. For example, landmarks of table corners can be
used to locate the corners of many different-sized tables.

3) Emptiness: Many useful checks can be programmed by
creating and searching for landmarks that model emptiness
in some way. A simple use of emptiness in landmarks is to
check whether a container or part of a container is empty. In
one example, we created a landmark of an empty cardboard
box so the robot could check if it was empty (Fig. 2h).
In another example (Fig. 2i), we made a landmark of an
empty side of a two-sided pencil holder, which allowed us
to determine which side or sides were empty.

There are other creative uses of emptiness in landmarks.
For example, to know whether the robot successfully grasped
a thin, lightweight object, the robot may need to visually

inspect its gripper. We were able to program this by creating
a landmark of the gripper with empty space underneath
(Fig. 2j).

We programmed the robot to determine whether it should
use its right gripper or its left gripper to grasp an object from
a shelf. In the confined shelf space, there was only room to
grasp the object from one side. To determine which side to
use, we created an object landmark with space to its right
and another version with space to the left (Fig. 2k).

Landmarks can also be used to find empty regions of
the workspace. For example, we were able to sample an
empty spot on the cluttered tabletop by creating a landmark
of a tabletop patch with empty space above it (Fig. 2l).
In our final example of using empty space, we envisioned
the robot loading clothes into a basket. To check if clothes
were hanging from the edge of the basket, we created
a landmark of the basket edge with some empty space
around it. Fig. 2(m) shows that this landmark can distinguish
between the back edge of the basket, which has nothing on
it, and the front edge, which has a shirt hanging over it.

4) Hole shapes: The use of empty space in our landmark
representation means that users can create landmarks of
workspace areas that are predominantly hole-shaped. For
example, some trash bins and recyling bins have lids with
differently-shaped holes. We were able to differentiate them
using landmarks of the lids (Fig. 2n). Die-cut foam pack-
aging, which has shapes cut out for holding items during
shipping (Fig. 2o), is another example. Using hole-shaped
landmarks, we were able to locate the spaces for two different
objects in the foam packaging.

5) Extra specificity: Fig. 2(p) shows how landmarks can
be designed slightly differently to represent different task
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Fig. 3: The precision and recall of the search algorithm for
the case study examples described in Section IV-A. The
vertical axis is shown with a minimum value of 0.6. The
large drop in the top left is due to a false positive match that
occurs at a relatively low error threshold.

requirements in the same scene. By adding empty space to
the top of a landmark of a can, the system can locate the
can on the top of a stack. In contrast, a landmark of a can
that includes part of the tabletop represents the can on the
bottom. Cans in the middle of a stack are harder to detect
because a generic can landmark, without the extra features
of the top or bottom cans, will have many matches along
the stack as the boundaries between cans is invisible. When
working with stacks of objects, we expect that most users
will be interested in locating only the object on the top.

B. Case study performance

In this section, we quantify the performance of the search
algorithm on the case studies described in Section IV-A.

1) Precision and recall: To measure the accuracy of the
system, we recorded the precision and recall of the system
using different error thresholds (Algorithm 1, line 13). For
each case study, we created a landmark in one scene and
searched for the landmark in a different scene, in which
objects and/or the workspace changed positions. We labeled
each scene with the correct locations of landmarks. For
some scenes, we also searched for landmarks that were
absent from the scene. For examples like finding an empty
patch of tabletop, which had many possible correct answers,
we manually graded the output of the algorithm instead of
labeling the scene. Fig. 3 shows the precision and recall curve
for this experiment. In this experiment, we were not able to
obtain 100% recall with any error threshold, because the non-
max suppression step of Algorithm 1 prevents some results
from being output. Table I shows the precision and recall
numbers for several values of the error threshold.

2) Speed: Most of the time spent in CustomLandmarks is
in the loop between lines 5 and 11 of Algorithm 1, which
evaluates a sample position in the scene. The number of
samples, in turn, is determined by the size of the scene.
Fig. 4 shows a plot of the speed of the algorithm against

TABLE I: Numeric values of precision and recall as shown
in Fig. 3 for several values of the error threshold.

Error threshold Precision Recall
0.0049 1.00 0.38
0.0062 0.97 0.84
0.0064 0.94 0.87
0.0068 0.92 0.90
0.0070 0.90 0.92
0.0075 0.81 0.95
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Fig. 4: Time taken to search for landmarks over different
scene sizes.

the number of points in the scene. This experiment was
conducted on a computer with an Intel® Core™ i7-4770 CPU
and 16 gigabytes of memory.

These results show that the system is mainly useful for
functional tasks in which speed is not critical. Implementing
improvements, such as using GPU computing or algorithmi-
cally eliminating excess work, could make the system faster
in the future. However, experienced robot programmers can
mitigate this issue by preprocessing the scene in ways that are
appropriate for the task. For example, if the landmark is in
a tabletop scene and the tabletop is not a relevant landmark,
the scene could be preprocessed to filter it out.

C. Limitations

Other than speed, CustomLandmarks has two main limita-
tions, illustrated in Figure 5. The first is that the system relies
on landmarks having a unique shape in the scene. The system
works best in semi-structured environments where there are
few distractions in the scene. To avoid this limitation, users
can redesign the landmark so that it is unique, although it
may not always be possible to do so.

The other main limitation is that the system can be
brittle to viewpoint changes, such as when an asymmetric
object is rotated. This is because we only capture landmarks
from a single view of a point cloud. One way to mitigate
this limitation is for users to create multiple landmarks
representing rotated versions of the same object.

V. ROBOT EXPERIMENTS

We ran a set of experiments to evaluate how well the
results from our offline experiments transfer to real manip-
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Fig. 5: Examples of limitations to the system. The left
example shows how a landmark of a can food can could
be confused for the cap of a laundry detergent bottle. The
example on the right shows how a landmark of the bottle
can be detected after a small viewpoint change (a 45 degree
rotation), but not after a larger change.

ulation tasks. To this end, we used CustomLandmarks in
conjunction with programming by demonstration (PbD) to
program six manipulation actions on a PR2 robot.

A. Programming by demonstration with CustomLandmarks

To program manipulation actions on the PR2, we modified
the PbD system in [23]. In this system, users program
manipulation actions by guiding the robot’s arms through
a sequence of end-effector poses. Poses are defined either
relative to the robot’s base or relative to a landmark. Once the
poses have been saved, the robot can repeat the action later.
First, it searches for the necessary landmarks, then it adjusts
the poses defined relative to those landmarks. Finally, the
robot’s arms move through the sequence of poses, opening
or closing the grippers as programmed. Using CustomLand-
marks allows users to define perceptual landmarks for their
task, and PbD lets users create manipulation actions based
on those landmarks, all without writing any code.

B. Task descriptions

The tasks were based on the case studies described in
Section IV-A. Each action we programmed was tested in
5 variants of the task, in which we moved objects and the
workspace around, or we added or removed objects.

1) Tool rack: We programmed the robot to either remove
a tool from a tool rack or place a tool in an empty spot on
the rack. The rack consisted of three 3D-printed wall mounts,
and all of the tools had the tool adaptor. Both are shown in
Fig. 2(b, d). The tasks were varied by changing where the
tools were placed. We also included scenarios where the tool
rack was full or empty and the correct action was to not act.
All but one of the tests succeeded. In the failed test, the robot
located an empty wall mount but used too much force when
placing the tool on it.

2) Grasping a chair: Previously, the PbD system we used
only worked in tabletop scenes. PbD could work in non-
tabletop scenes using our system, we programmed the robot
to detect and grasp a chair (Fig. 2g). We varied the scenes by
setting the chair to different heights and moving it around.
One of the five tests failed because our system could not
locate the chair, showing how our system could fail if the
viewpoint changed too much.

Fig. 6: The PR2 robot using CustomLandmarks to place a
tool on a tool rack. The top row shows the user defining
the landmark and demonstrating the action and the robot
localizing the landmark in a new scene. The bottom row
shows the robot executing the task.

3) Picking bowls from a shelf: In this task, the robot
picked bowls from a shelf. The tasks were varied by placing
bowls on different levels of the shelf, placing them in stacks,
or removing all the bowls entirely. Because the shelf was at
eye level and some bowls were stacked, it was necessary to
create a bowl rim landmark, as illustrated in Fig. 2(a). The
robot successfully grasped a bowl in all five scenarios.

4) Waste bins: For this task, we wanted the robot to either
deposit an item into the trash bin or the recycling bin shown
in Fig. 2(n). In the different scenarios, we varied where the
bins were placed and which bin the robot needed to drop
the item into. In one scenario, we removed the bin the robot
needed to drop the item to see if it would mistakenly do so.
All five scenarios we tested worked as expected.

5) Cluttered tabletop: In this task, the robot needed to
drop an item onto an empty spot on a table (Fig. 2l). We
varied the items and their positions on the table. One of these
scenarios failed because we placed a large, flat box on the
table, which our system thought was an empty patch on the
table. This failure shows how our system needs landmarks
to have a unique shape in the scene.

6) Control panel: In this task, the robot pushed buttons on
a mockup of a control panel (Fig. 2f). Instead of locating the
buttons directly, the robot instead located a dial, and pushed
the buttons based on the location of the dial. We varied the
scenarios by moving the control panel around and increasing
its incline angle. The system failed to locate the dial in one
scenario where the control panel was inclined.

C. Discussion

Overall, the robot succeeded in 26 out of the 30 total
scenes it was evaluated in. Our search algorithm detected all
of the different kinds of landmarks described in Section IV-
A. It also correctly recognized all of the cases where needed
landmarks were missing, which avoided having the robot
execute an action it was not supposed to.

The actions we programmed using PbD did not require
writing any code. However, adding programming logic to the
system could have helped us avoid some of the failure cases
we encountered. For example, when searching for an empty



Fig. 7: The experiment interface in editing mode. The
interface to create landmarks is shown on the left and a user
study-specific display is shown on the right.

patch on a table, we could have filtered out all detections
that were not located at the table’s height.

VI. USER EVALUATION

Although CustomLandmarks can be used to design non-
standard landmarks, it is important to know if users can
actually understand and utilize the system in such a way. To
address this question, we conducted a user study in which
participants created landmarks for different robot tasks.

A. Study design

We asked users to create landmarks that would enable a
robot to execute a set of three tasks. Tasks were assigned
in random order. For each task, users had to create their
landmark in one scene but test it in a different scene.
This was to emulate real-world usage of the system. In the
experiment interface (Fig. 7) users could switch between
editing and testing modes as many times as needed. An
experimenter observed their actions and informed users when
they had solved a task correctly.

1) Tasks: The robot tasks were:
a. Placing an object on an empty spot on a cluttered table.
b. Picking bowls out of an eye-level shelf (including from

the top of a stack of bowls).
c. Placing an object in an empty compartment of a two-

compartment pencil holder.
Our main research question was whether users could

design unconventional landmarks using CustomLandmarks.
The correct landmarks were either object parts or scene parts.
The first task required users to create a landmark of an empty
patch of the table surface. To prevent trivial solutions with
patches that were too small or too large, we required that
the landmark be found in the test scene at least six times
with no false positives. In the second task, users initially
saw unstacked bowls, so the obvious solution was to make
a landmark of a bowl. However, in the test scene, we turned
one of the bowls into a stack, which required users to modify
the landmark to represent a bowl rim. In the third task, we
showed users an empty pencil holder, but in the test scene,
one of the sides was filled with objects. As a result, users
had to figure out that the landmark should be a single side
of the container, as shown in Fig. 7.

TABLE II: Mean task performance measures from the user
evaluation. Task numbers are as given in Section VI-A.1.

Task Total time Edit mode time # of edits
Task A 5:55 3:16 5.64
Task B 4:15 2:23 4.5
Task C 3:38 2:33 3

All tasks 4:34 2:44 4.35

TABLE III: NASA-TLX survey results.

NASA-TLX subscale Mean workload rating Stdev
Mental demand 54.67 4.13

Physical demand 25.00 4.28
Temporal demand 29.00 3.99

Performance 29.00 4.49
Effort 54.33 3.48

Frustration 32.67 5.38
Raw TLX score 44.93 15.75

2) Training: To train users, an experimenter read from a
script to explain the concept of landmarks. Users performed
one training task where there was a line of cans on a table.
Users practiced creating a landmark of a can. They were then
introduced to the concept of a landmark representing empty
space by modifying their landmark to only match with the
rightmost can. The training session took approximately five
minutes to complete.

3) Participants: We recruited participants through email
and social media posts targeting undergraduate and graduate
engineering students at the University of Washington. All
participants were required to be novices to CustomLand-
marks. This represented the population that would benefit
from the system the most: technical, college-educated peo-
ple who are not necessarily experts in computer vision or
robotics. We recruited 15 participants, 9 male and 6 female.
Their ages ranged from 18 to 32 and averaged 23.3. All
participants received a $10 gift card for completing the study.

4) Measures: Because an experimenter told users whether
each task had been completed correctly, we measured task
performance using time spent per task and number of tasks
completed within the 30 minutes allotted for the study. The
experiment interface also measured the time spent editing
and testing landmarks. Finally, we administered the widely-
used NASA Task Load Index (TLX) survey [27] to measure
the subjective workload of the tasks.

B. Results

14 out of the 15 participants correctly completed all of
the tasks within the time limit of the study. The average
time to complete a task correctly was 4:34 minutes, with
2:44 minutes of that time spent in editing mode. Performance
measures for each task are summarized in Table II.

There are many ways to interpret TLX survey ratings [27],
so Table III reports the average ratings for each workload
category. The Raw TLX score, an average of all the cat-
egories, was 44.9, which is in the 40th percentile of TLX
scores according to one meta-analysis [28].



C. Discussion

Our results show that users can learn to use Custom-
Landmarks and design unconventional landmarks in a short
amount of time. Additionally, users were able to generalize
from the training task, in which they created a landmark of
a whole object, to tasks in which the landmarks represented
parts of objects or parts of the scene.

In the study, users could rapidly switch between editing
and testing modes to refine their landmark. However, when
actually using CustomLandmarks, there may be a larger time
gap between when a landmark is created and when it is
used. As a result, we suggest that any tool for creating
custom landmarks should incorporate a testing function that
lets users try out the landmark on pre-recorded scenes.

VII. CONCLUSION

We present a system that enables roboticists and non-
roboticists alike to rapidly create perceptual detectors for
robot manipulation tasks. Our novel representation of land-
marks allows users to complete perceptual tasks involving
object parts or parts of a robot’s workspace—tasks that
traditional detectors are not designed to solve. Through
experiments on over a dozen radically different tasks and
30 task executions, we showed that the system is effective
at locating landmarks and can be deployed on robots in the
real world. Finally, through a user study with 15 novices
to the system, we showed that our user interface, landmark
representation, and search algorithm are all intuitive to learn
and use. In future work, we will improve on the system’s
accuracy and speed and apply the concept of user-defined
landmarks to domains where color information is important.
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