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Abstract— Concurrency makes robot programming challeng-
ing even for professional programmers, yet it is essential for
rich, interactive social robot behaviors. Visual programming
aims to lower the barrier for robot programming but does
not support rich concurrent behavior for meaningful robotics
applications. In this paper, we explore extensions to block-based
visual languages to enable programming of concurrent behavior
with (1) asynchronous procedure calls, which encourage imper-
ative programming, (2) callbacks, which encourage event-driven
programming, and (3) promise, which also encourages impera-
tive programming by providing event synchronization utilities.
We compare these approaches through a systematic analysis of
social robot programs with representative concurrency patterns,
as well as a user study (N=23) in which participants authored
such programs. Our work identifies characteristic differences
between these approaches and demonstrates that the promise-
based concurrency interface enables more concise programs
with fewer errors.

I. INTRODUCTION

Social robots are becoming increasingly ubiquitous
across domains including entertainment, education, social-
emotional learning, and mental health support, among others.
Programming social robots to be robust, effective, and en-
gaging for every unique use case and environment remains a
bottleneck given the complex multi-modal, interactive nature
of desired robot behaviors.

Research in end-user robot programming [1], [2], [3],
[4] aims to create tools that let people with little or no
experience with software development write robot programs
on their own through intuitive interfaces. End-user program-
ming often involves abstractions of programming concepts
to simplify the programming task as well as constraints to
avoid programmer errors. These simplifications often come at
a cost of expressivity, i.e., robot behaviors obtainable using
simplified languages are not as rich as ones created using
general-purpose languages by expert programmers.

One concept that is particularly difficult to simplify, yet
essential for robot behaviors, is concurrency–the execution
of multiple threads in parallel. Interactive social robot be-
haviors require concurrency in many ways. For example,
coordinating multiple expressive actions, like gesturing and
making sounds, or handling human interruptions, such as
poking or leaving during a robot action, require concurrency
handling [1], [5]. However, creating programs with concur-
rent behavior is notoriously difficult even for professional
programmers [6] because it involves complex concepts, such
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Fig. 1. ConCodeIt! web interface used for the study. (Left) Block-based
visual program editor. (Right) The robot’s face and texts showing its status.

as callback registration and handling, in widely used robot
programming frameworks like ROS1.

Prior work on end-user robot programming provides at
least one means of expressing concurrency [7], [8], [9],
[5], [10]. However, to our knowledge, no prior work has
investigated and compared alternative approaches for sup-
porting concurrency in robot programming through sim-
plified interfaces. Our paper aims to close this gap. To
that end, we present Concurrent CodeIt! (ConCodeIt!), a
block-based visual programming system that lets novice
programmers create different concurrent behaviors on a robot
(extending our previous work on CodeIt! [2], [11], [5]).
We designed three alternative concurrency interfaces for
ConCodeIt! with (1) asynchronous procedure calls, which
encourage imperative programming, (2) callbacks, which en-
courage event-driven programming, and (3) promises, which
also encourage imperative programming by providing event
synchronization utilities. We first identified representative
social robot programs that have common concurrency pat-
terns, and we systematically analyzed programs written with
each concurrency interface to characterize its expressivity.
We then comparatively evaluated the three interfaces through
a user study in which participants authored concurrent robot
behaviors. Our results indicate that callback-based concur-
rency is most complex and challenging for lay programmers,
while promise-based concurrency allows more concise and
intuitive programs.

II. RELATED WORK

Research in end-user robot programming aims to pro-
duce easily understood abstractions of robot program-
ming languages and develop intuitive user interfaces for

1https://www.ros.org/
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programming. Researchers have developed several visual
programming languages based on abstractions including
flowcharts [8], [9], [12], state machines [13], behavior
trees [14], block-based imperative languages [2], [5], [11],
and trigger-action rules [15]. Systems have been developed
for programming mobile or tabletop manipulators [12],
[2], [11], [16], [13], [17], humanoid robots [9], [1], [15],
and social robots [18]. Others have investigated alternative
modes of interaction, such as natural language [18], body-
storming [4]. and tangible interfaces [19].

A subset of prior work presents ways to express con-
currency within a robot programming system. Lourens and
Barakova’s textual language [7] and Chorepographe, a de-
fault programming system for the Nao humanoid robot [8],
provide generic operators such as wait, parallel, and sequence
for coordinating actions and sensor inputs. Interaction com-
poser enables the handling of asynchronous events using the
interrupt module, which executes the robot action defined
within the module when a monitoring event is triggered [9],
[1]. Robot programming systems have been built by taking a
human-centered approach that provides specialized ways for
expressing frequently desired concurrent actions [5], [10].
Some robot control systems that aim to make authoring
socially intelligent and reactive and to simplify complex
robot behaviors are based on a mathematical model or pro-
gramming paradigm that emphasizes concurrency support,
such as timed Petri net [20], behavior tree [21], and reactive
programming paradigms [22]. Although the preceding list
provides options for expressing concurrency, the work gives
priority to developing a robot programming system. Our
work further investigates and evaluates different ways of
supporting programming interactive robots with concurrency.

III. SYSTEM OVERVIEW

ConCodeIt! has three components: a general-purpose pro-
gramming language with (1) custom robot action and sensing
primitives and (2) custom concurrency constructs. It also
includes (3) a graphical user interface.

A. Programming Language

ConCodeIt! exposes a small subset of JavaScript to
users via Blockly, a block-based visual programming in-
terface [23]. This subset includes JavaScript language
constructs for expressing variables, loops, and condition-
als but does not include concurrency functions such as
setTimeout. ConCodeIt! supports concurrency with its
custom functions for robot interfacing (Sec. III-B) and cus-
tom concurrent constructs (Sec. III-C).

B. Robot Primitives

1) Robot Platform: ConCodeIt! is not tied to a par-
ticular robot; however, we focus in this paper on using
ConCodeIt! to program an idealized social robot, Meebo.
Meebo consists of a “face;” a GeeekPi 7inch touchscreen
for displaying messages and buttons; and a “neck,” a 5-
DoF Open MANIPULATOR-X robot arm for making head

TABLE I
ROBOT ACTIONS

Name and arguments Asynchrony
say(string text) blocking
gesture(string expression) blocking
displayText(string text, number duration) blocking
displayButton(string[] choices, number duration) blocking
sleep(number duration) blocking
startSaying(string text) non-blocking
startGesturing(string expression) non-blocking
startDisplayText(string text, number duration) non-blocking
startDisplayButton(string[] choices, number dura-
tion)

non-blocking

startSleeping(number duration) non-blocking

gestures such as nod and shake. It can speak and rec-
ognize speech via a speaker microphone attached to the
connected computer. The control system for Meebo is a
JavasScript library that exposes function calls for triggering
robot actions, like displaying messages, and for returning
(processed) sensor outputs, like the recognized speech texts
of a user. We used Cycle.js to build a web application for
displaying messages and buttons and the Web Speech API
implementation for the Chrome browser for speech synthesis
and recognition.2 The web application was loaded on the
touchscreen when the robot was turned on. For gesturing,
we used the open manipulator controller ROS package and
the roslib npm package for controlling the robot arm.3 For
the user study, we used a simulated version of Meebo, as
shown in Fig. 1right, to conduct the study online (Sec. VI).

2) Robot Actions: Actions are robot control processes
that can be started from a program and run until finished
or preempted. Actions can be synchronous, i.e., block the
process until the action is done, or asynchronous, i.e., start
an action and move on to executing the next statement. For
each action, we assume only one instance can run at a time
regardless of an action’s asynchrony. Available actions are
shown as function definitions in Table I; action names are
shown in bold, arguments are in italic, and variable types are
in normal font. The asynchrony of available robot actions is
shown in the right column of Table I.

We define the following robot actions. say causes the robot
to say a phrase, and gesture makes the robot do one of a
few pre-specified gestures, like a “happy” or “sad” gesture,
by moving its neck and making a facial expression. Only
one message can be said at a time, and only one gesture can
be played at a time. displayText displays a text message
for the user, and displayButtons displays a list of buttons
as choices on the face screen. Only one message and only
one set of buttons can be displayed at a time. sleep pauses
program execution for the specified duration. Only one sleep
can be used at a time.

3) Robot Events and States: Events indicate the occur-
rence of some change at a specific point in time. For Con-
CodeIt!, we defined two event categories: externally triggered

2https://cycle.js.org, https://wicg.github.io/speech-api
3http://wiki.ros.org/open manipulator, https://npmjs.com/package/roslib
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TABLE II
ROBOT EVENTS AND STATES

Event name Last event state name Value type
speechDetected lastDetectedSpeech string
buttonPressed lastPressedButton string

(a) Externally triggered events

Event name Action status state name Value type
sayDone isSaying boolean
gestureDone isGesturing boolean
displayTextDone isDisplayingText boolean
displayButtonDone isDisplayingButton boolean
sleepDone isSleeping boolean

(b) Action-triggered events

TABLE III
THREE CONCODEIT! INTERFACE SETUPS

Name Blocking
actions

Non-
blocking
actions

Action
events

Action
states

External
events

External
states

async no yes no yes no yes
callback no yes yes yes yes yes
waitfor yes no no yes yes yes

and action-triggered events. Externally triggered events are
initiated by some entity and sensed and processed by the
robot. For example, a user finishing speaking to the robot
triggers a speechDetected event. Action-triggered events
indicate the completion of running an action, e.g., a sayDone
event occurs when the robot finishes saying a phrase. States
are conditions whose value can be evaluated and accessed
at any given time. Events can be converted to states by
storing the most recently emitted value, for example, the
lastDetectedSpeech state stores the most recently detected
speech text as a string value.

Table II shows the complete list of the robot events and
states. A buttonPressed event is triggered when a robot
detects a human pressing one of the displayed buttons shown
using displayButtons. The lastPressedButton state stores
the value of the most recent buttonPressed event as a string.
An actionNameDone event occurs when the robot completes
an action. Finally, the isActionNameing states indicate the
running status of the robot actions.

C. Concurrent Programming in ConCodeIt!

ConCodeIt! provides the following functions to help
users work with concurrent robot events and states.
The when function takes the eventName string and
callback functions as input arguments and invokes the
callback function when an eventName event occurs.
The accessor functions, such as getLastEventName and
getIsActionNameing, return stored last event or latest
state values. wait function takes eventName which blocks
the process until one eventName event occurs, and returns
the value of the occurred event. The waitForAll and
waitForOne take a list of programs as input arguments;

waitForAll blocks the process until all input programs
are finished, and waitForOne blocks the process until
one of the input programs is finished. The behavior of
waitForAll and waitForOne is modeled after common
promise-based synchronization utilities.4 In fact, since Con-
CodeIt! is based on JavaScript, we leveraged JavaScript’s
features, such as event handlers and async/await promise, to
implement the concurrency functions.

We present three ConCodeIt! interfaces–async, callback,
and waitfor–that employ different combinations of the con-
currency functions noted above (see Table III). Each im-
plementation supports a different concurrent programming
approach. async is designed to provide the traditional con-
current programming experience, e.g., as in socket pro-
gramming, to users. Users have access to the asynchronous
function calls for starting actions and the action state accessor
functions. callback is inspired by JavaScript’s event-driven
programming and Star Wars: Building a Galaxy With Code
exercises at Code.org5. Similar to async, users can launch the
robot’s actions using asynchronous function calls and check
the action status and latest values of externally triggered
events using the state accessor functions. Users also have
access to the when function to register a callback function;
the callback function is called for occurrences of the specified
robot action or external event specified by the user. waitfor
helps to easily express concurrency behaviors while staying
in the imperative programming paradigm using promise,6

more specifically the wait, waitForOne, waitForAll
functions that make use of promise. Like the other two
implementations, users have access to all state accessor
functions; however, they can use blocking functions to run
actions instead of using non-blocking trigger functions.

D. Graphical User Interface

The graphical user interface for ConCodeIt! uses Blockly,
a library for creating block-based visual programming editors
(Fig. 1left). Users drag and drop blocks from a toolbox
of predetermined blocks onto a workspace to construct
programs located on the left side of the editor. The blocks
are organized into different categories – such as loops, logic,
math, and ConCodeIt!-specific blocks – which can be linked
through stacking or nesting or attached to variables that
will be returned. Users can run or stop the program using
the buttons located below the editor. Once running, the
program controls the robot face displayed on the right of
the interface and updates the robot status displayed below
the face. Blockly enables code generation, which we use to
generate the code for the ConCodeIt!-specific functions, as
discussed in Sec. III-B and Sec. III-C. Blockly also supports
exporting a visual block program as an XML file, which we
use in the “Download as XML” button displayed below the
editor.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Promise/all, https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global Objects/Promise/race

5https://code.org/starwars
6https://en.wikipedia.org/wiki/Futures and promises
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IV. CONCURRENCY PATTERNS

We are interested in the common concurrency patterns
involved in robot programming. To this end, we define the
concurrency patterns with (1) the source of the robot events,
and (2) how users want to handle multiple events. There are
two sources of the robot events, robot action and external
(Sec. III-B.3) and two ways to handle events, waiting for
all events or waiting for a certain event to occur. Since
there are three ways to combine the sources of events (e.g.,
Action-Action, Action-Event, Event-Event) and two waiting
approaches, there are six concurrency patterns of interest.

Table IV shows example code for three selected concur-
rency patterns expressed using the three ConCodeIt! imple-
mentations. The three patterns are (1) running two actions
in parallel and waiting for all of them to finish, (2) waiting
for one of two alternate inputs, and (3) waiting for an input
event or the end of a running action. At a high-level, async
requires using a loop to check robot states; callback requires
using the when functions for reacting to events; and waitfor
requires using waitForAll or waitForOne.

V. SYSTEMATIC EVALUATION

To objectively investigate the similarities and differences
among three concurrent programming approaches, we sys-
tematically evaluated the three ConCodeIt! interfaces: (1) im-
perative programming with asynchronous function calls, (2)
event-driven programming with callbacks, and (3) imperative
programming with event synchronization helper functions
(Sec. III-C), as well as the common concurrency pattern in
robot programming (Sec. IV).

A. Procedure

We first designed a set of unit concurrent robot behaviors,
one for each concurrency pattern described in Sec. IV.
We describe unit behaviors in Table V. We designed each
behavior as a minimal robot behavior that expresses the
associated concurrency pattern, and we implemented each
behavior using each of the three ConCodeIt! interfaces.
Where there were multiple ways to implement the desired
behavior, we chose the approach requiring the least number
of blocks. The resulting visual programs were stored as XML
files to run our evaluation metrics.

B. Measures

We approximated the complexity of the unit behavior
programs using the following measures.

1) Number of blocks: The total number of individual
blocks used to implement a program. The three ConCodeit!
interfaces have different total numbers of available block
types because of the interface-specific blocks (Sec. III-C).
For example, the when block is available only in callback,
and waitForAll and waitForOne are available only in
waitfor.

2) Number of functions: The total number of function
definition blocks. This measure includes the when block
counts because it is used to define a callback function.
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Fig. 2. Systematic evaluation results: interfaces vs. measures.

(a) async

(b) callback

(c) waitfor

Fig. 3. Wait-for-All with Action-Event (WA-AE) programs implemented
using three ConCodeIt! interfaces.

3) Number of variables: The total number of variable
definition blocks.

4) Number of loops: The total number of loop statement
blocks, such as for and while blocks.

5) Number of branches: The total number of if statement
blocks, such as if, else, else if, and logical ternary
blocks. Note that if an if statement contains multiple else
ifs, it is counted as one plus the number of else ifs.

6) Number of conditions: The total number of logical op-
erator blocks, such as negation, conjunction, and disjunction
blocks, and arithmetic comparison operator blocks, such as
greater than and equals.

C. Results

Fig. 2 shows the results of the systematic analysis. Overall,
callback resulted in the most complex programs since it
had the highest averages in most measures (5/6, i.e., all



TABLE IV
SELECTED CONCURRENCY PATTERNS IN THE THREE CONCODEIT! IMPLEMENTATIONS

Action-Action & Wait-for-All Event-Event & Wait-for-One Action-Event & WaitForOne
run two actions in parallel wait for one of two alternate inputs wait for input while running an action

as
yn

c 1 startSaying("hi");
2 startGesturing("happy");
3 while (isSaying() ||

isGesturing()) {↪→
4 sleep(1);
5 }
6 // do the next thing

1 startDisplayingButton("Start",
1000)↪→

2 var lastSpeechVal =
getLastDetectedSpeech();↪→

3 var lastButtonVal =
getLastPressedButton();↪→

4 while(lastSpeechVal == null &&
lastButtonVal == null) {↪→

5 sleep(1);
6 lastSpeechVal =

getLastDetectedSpeech();↪→
7 lastButtonVal =

getLastPressedButton();↪→
8 }
9 // do the next thing

1 startDisplayingButton("Continue",
1000);↪→

2 var lastButtonVal =
getLastPressedButton();↪→

3 startSaying("very long
sentence")↪→

4 while(isSaying() &&
lastButtonVal == null) {↪→

5 sleep(1);
6 lastButtonVal =

getLastPressedButton();↪→
7 }
8 // do the next thing

ca
llb

ac
k 1 startSaying("hi")

2 startGesturing("happy")

3 when("sayDone", function() {
4 if (isGesturing()) return;
5 // do the next thing
6 });

7 when("gestureDone", function() {
8 if (isSaying()) return;
9 // do the next thing
10 });

1 startDisplayingButton("Start",
1000)↪→

2 when("speechDetected",
function() {↪→

3 // do the next thing
4 })

5 when("buttonPressed", function()
{↪→

6 // do the next thing
7 })

1 displayButton("Continue", 1000);
2 startSaying("a very very long

sentence");↪→

3 when("displayingButtonDone",
function() {↪→

4 // do the next thing
5 });

6 when("buttonPressed", function()
{↪→

7 // do the next thing
8 });

w
ai

tfo
r 1 waitForAll(

2 'say("Hi")',
3 'gesture(happy)'
4 );
5 // do the next thing

1 waitForOne(
2 'displayButton("Start",

1000)',↪→
3 'wait("speechDetected")',
4 'wait("buttonPressed")'
5 );
6 // do the next thing

1 waitForOne(
2 'displayButton("Continue",

1000)',↪→
3 'say("a very very long

sentence")',↪→
4 'wait("buttonPressed")'
5 )
6 // do the next thing

TABLE V
UNIT CONCURRENT ROBOT BEHAVIOR DESCRIPTIONS

Wait-for-All (WA) Wait-for-One (WO)
Action-
Action
(AA)

Step 1: The robot should say
“Hello there!” and do the “greet”
gesture.
Step 2: The robot should say
“My name is Meebo” and do the
“happy” gesture.

Step 1: The robot should say
“Hello” and sleep for 3 seconds.
Step 2: The robot should say
“timed out.”

Action-
Event
(AE)

Step 1: The robot should say
“Hello there!” and wait for a face
to appear.
Step 2: The robot should say
“Nice to meet you!”

Step 1: The robot should say
“Hello there, my name is Meebo.
Goodbye now!” and wait for the
human’s face to disappear.
Step 2: The robot should display
“On standby.”

Event-
Event
(EE)

Step 1: The robot should wait for
the human to look to the center
and stop speaking.
Step 2: The robot should say
”Hello.”

Step 1: The robot should wait for
the human to look to the left and
wait for the human to look right.
Step 2: The robot should display
”Bye now!”

excepts the number of branches). Next was async since it
had the highest averages in two measures (i.e., the number
of branches and the number of conditions). Finally, waitfor
resulted in the simplest programs since it had the lowest
averages in all measures (Fig. 2).

Only callback programs required the use of functions
and if statement blocks. These programs typically needed
separate when blocks for each action/event to be detected,
variables to monitor whether an action/event had been com-
pleted, then a separate function that was triggered in each
when block to perform the final action (e.g., see Fig. 3b).
Another reason for callback programs’ use of the highest
number of variables on average was individual variables
needed to monitor the state of the robot’s interactions.

Only async programs required the use of a loop statement
block. These programs typically needed to continuously
block the rest of the program from executing until either one
or all of the events/actions were completed, which was done
using a while loop with a pass block inside (see Fig. 3a
for an example).

Finally, only waitfor programs did not require the use
of any logical connective or arithmetic comparison operator
blocks. These programs typically used one of the concurrent
blocks that waited for one or all of the actions/events within
it, and no other blocks were needed (see Fig. 3c for an
example).



TABLE VI
USER STUDY TASK DESCRIPTIONS AND RUBRIC

Practice task
Step 1: On start, the robot should say “rain rain go away” and do the “sad”
gesture. (WA-AA)
Step 2: Once the robot finishes saying “rain rain go away” and doing
a “sad” gesture, it should say “little johnny wants to play” and do the
“happy” gesture. (WA-AA)

Main task
Step 1: On start, the robot should display “Press or say ‘start’ to begin
interaction” as well as a button with “start” text. (WO-EE)
Step 2: If the user presses the button or says “start,” then the robot should
introduce itself by saying “Hello, my name is Meebo” and make a happy
gesture. (WA-AA)
Step 3: If the robot finishes both actions (i.e., saying and gesturing), the
robot should display a question “What is 212? You have 10 seconds to
answer” as well as a button with “I’m ready to answer” text. The question
and button should be displayed for 10 seconds. (WO-AE)
Step 4: If 10 seconds pass without the user pressing the button, the robot
should display “You are out of time.” If the button is pressed in time, the
robot should display “Please say your answer” and wait for the user to say
the answer. If the user says an answer, the robot should check the answer
and accordingly display “correct” or “wrong” for 5 seconds.

Rubric for the main task
Step 1.1: displays both button and text until next step
Step 1.2: moves on when “start” button is pressed
Step 1.3: moves on when “start” human speech is detected
Step 1.4: correctly implements Wait-for-One behavior
Step 2.1: introduces itself and makes a gesture
Step 2.2: waits for “happy” gesture to finish
Step 2.3: waits for the robot to finish speaking
Step 2.4: only moves on when both robot actions are over
Step 3.1: asks a question and displays a button
Step 3.2: waits for 10 seconds
Step 3.3: moves on when the button is pressed
Step 3.4: displays “You are out of time” when button is not pressed after
10 second
Step 4.1: displays text to prompt answer
Step 4.2: waits for user to input speech
Step 4.3: moves on when speech is detected
Step 4.4: displays whether input is correct or not

VI. USER STUDY

A. Study Design

Like the systematic evaluation (Sec. V), the user study had
three conditions that represented the three concurrent robot
programming approaches provided by the three ConCodeIt!
interfaces (Sec. III-C): async, callback, waitfor. The goal of
the study was to compare the three concurrent programming
approaches. We used a between-groups design, i.e., each
participant was assigned to one of the three conditions.
The study was conducted online using a Google form that
contained instructions and a ConCodeIt! web page (Fig. 1).
Participants were asked to spend around 60 to 90 minutes
to complete the study and were offered a $20 Amazon.com
gift card for their participation.

Participants in all conditions were shown a video tutorial
explaining how to use the ConCodeIt! interface and inter-
act with the simulated robot. In addition, all participants
were given an interface-specific video tutorial to explain the
assigned ConCodeIt! interface-specific functions (Sec. III-
C). They were then asked to implement two tasks (Ta-
ble VItop,middle). The first was a practice task, and the

solution was provided. Next, participants were asked to
implement the main task and submit their program once
finished. After completing the task, they answered a post-
study questionnaire (Sec. VI-B.3).

B. Measures

The ease of use of each condition was estimated using the
following measures.

1) Systematic evaluation measures: These included the
six block count measures used in Sec. V-B.

2) Correctness of programs: We developed a rubric to
evaluate the correctness of participant-submitted programs
(see Table VIbottom).

3) Post-study questionnaire: We asked our participants to
complete the System Usability Scale (SUS) questionnaire7.
We also asked all participants to rank their programming
experience on a scale of 1 to 5, with 1 being no prior
experience and 5 being a professional level of experience,
and to list any programming courses they completed. The
final open-ended question aimed to elicit general comments,
i.e., “Any other comments about the study?”

C. Participants

The target users of ConCodeIt! are people with basic
programming knowledge and no robot programming expe-
rience. We recruited participants using introductory class
and general mailing lists from the University of Washington
Computer Science and Engineering (CSE) Department. The
participants were dividend three separate groups, one for
each ConCodeIt! interface. Group 1 was asked to use async,
Group 2 to use callback, and Group 3 to use waitfor.

There was a total of 21 participants, six for Group 1 (four
female) and Group 2 (three female) conditions and nine for
Group 3 (seven female). The means and standard deviations
of age were: M = 20.67 & SD = 2.80 (Group 1); M = 21.71 &
SD = 2.40 (Group 2); M = 19.67 & SD = 0.87 (Group 3). The
means and standard deviations of self-reported programming
experience were: M = 3.00 & SD = 0.63 (Group 1); M = 1.03
& SD = 1.90 (Group 2); M = 3.22 & SD = 0.67 (Group 3).
Of the 23 participants, 1 of 23 had taken no programming
classes, 17 of 23 completed introductory courses, 9 of 23
had experience taking mid-level programming courses, and
1 of 23 took advanced programming courses offered by the
University of Washington.

D. Results

Fig. 4 shows the six measures applied to the participant
submitted programs. Overall, the programs in waitfor re-
quired the lowest average number of blocks (in 3/6 mea-
sures, i.e., number of blocks, variables, and loops), and the
programs in async required the highest average number of
blocks (in 4/6 measures, i.e., number of blocks, variables, and
loops, and conditions). callback required the highest average
number of functions, and the average number of branches
and async required the highest average number of loops.

7https://www.usability.gov
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Fig. 4. User study results: interfaces vs. measures.
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Fig. 5. Number of blocks vs. user scores vs. interfaces (left) or vs. CSE
332 background (right). Averages are displayed as lines.

Regarding the correctness of programs, the mean and
standard deviation of score were: M = 8.83 & SD = 6.31
(Group 1); M = 7.83 & SD = 4.96 (Group 2); M = 10.56 &
SD = 3.88 (Group 3). The highest possible score was 16. The
relationship between the number of blocks and scores across
the three interfaces is shown in Fig. 5left. We visualized the
number of blocks and scores across participants who took a
programming course that covers concurrency (CSE 332) and
those who did not (Fig. 5right). The average for participants
who took CSE 332 was not higher than for those who did
not.

The means and standard deviations of SUS score were:
M = 40.00 & SD = 9.22 (Group 1); M = 42.08 & SD
= 22.27 (Group 2); M = 46.39 & SD = 16.64 (Group
3). The scores are below the SUS average score (68).
Investigating the open-ended comments from 19 participants,
seven mentioned issues related to the Blockly editor (“...
annoying to figure out making lists one element”, “Would be
nice to have a zoom in/out feature on the interface.”); nine
people mentioned that they did not understand how to display
buttons and detect a pressed button (“... I spent 10 minutes
figuring out how to display a button”); and three people
mentioned the potential benefit of having a reference sheet
(“It would be helpful to have a glossary/element lookup.”).
Only one person explicitly mentioned the challenge with
concurrent programming (“The parallel programming part
definitely needs to be explained very explicitly ...”).

E. User-Created Program Examples

Participants in the study thought of ways to create pro-
grams with ConCodeIt! interfaces that we did not envision

(a)

(b)

Fig. 6. User-created programs using “callback” ConCodeIt!

Fig. 7. A user-created program using “waitfor” ConCodeIt!

when initially designing them. For example, we expected
participants to use callback to implement the most logic in
each callback function, as shown in Fig. 6a. However, some
participants created the main loop with sub-loops for check-
ing the global variables representing the state of the program.
In this case, the callback functions (i.e., when blocks) were
used to update the global variables to indicate the change
in the state (see Fig. 6b). Another unexpected pattern we
observed was in the programs created with waitfor. While
waitfor lets programmers avoid using loops to wait for an
event (see examples in Fig. 3a,c), some participants used
loops, like the participants who used async did (Fig. 7).

VII. DISCUSSION

Based on our study, the waitfor interface, which is based
on imperative programming with promise-like event synchro-
nization utilities, was the easiest to use in the context of
programming interactive robots. Participants who used this
interface created the most concise programs with the highest
scores on average (Sec. VI-D). These participants had the
youngest average age and had taken the least number of



programming courses compared to participants who used the
other ConCodeIt! interfaces (Sec. VI-C), viz., callback based
on event-driven programming and asynch based on impera-
tive programming with asynchronous procedure call utilities.
However, we acknowledge that the number of participants
involved in our study was small.

One question we considered throughout the study was
why callback was challenging. Investigating the user-created
programs from the user study (Sec. VI-E), we noticed that
explicit state management (e.g., using variables to indicate
which “state” the robot is in) and the multiple patterns a
programmer could employ (e.g., using the main loop and
global variables that are modified in callbacks vs. chaining
callback functions) were the key areas of difficulty. Partici-
pants may have also had problems due to their unfamiliarity
with event-driven programming. Most participants had taken
the introductory and mid-level programming courses at CSE
that use imperative, not event-driven, programming.

Compared to waitfor, the asynch interface, which also
uses imperative programming but with asynchronous pro-
cedure call utilities, made participants perform redundant
work to implement common concurrency patterns (Fig. 3a).
Overall, we believe that adding minimal features to support
concurrency while allowing programmers to keep a consis-
tent mental model is key to achieving ease of use while
supporting desired concurrency behaviors.

VIII. CONCLUSION

This paper presented ConCodeIt!, a block-based visual
programming system for programming interactive robots. We
first defined a framework for (1) identifying programming
constructs required for expressing concurrency, and (2) cat-
egorizing common concurrency patterns in the context of
programming robots. We then proposed three programming
systems that represent common approaches for expressing
concurrency and compared them via a systematic evaluation
and an online user study. Our results show that the imper-
ative programming paradigm with synchronization support
produced more concise and predictable programs, while the
event-driven one was more challenging for programmers
without robotics knowledge.
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