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ABSTRACT
Researchers have proposed models of curiosity as a means to drive
robots to learn and adapt to their environments. While these mod-
els balance goal- and exploration-oriented actions in a mathemat-
ically principled manor, it is not understood how users perceive
a robot that pursues off-task actions. Motivated by a model of
curiosity based on intrinsic rewards, we conducted three online
video-surveys with a total of 264 participants, evaluating a variety
of curious behaviors. Our results indicate that a robot’s off-task
actions are perceived as expressions of curiosity, but that these
actions lead to a negative impact on perceptions of the robot’s
competence. When the robot explains or acknowledges its devia-
tion from the primary task, this can partially mitigate the negative
effects of off-task actions.

CCS CONCEPTS
•Applied computing→Psychology; •Human-centered com-
puting → Empirical studies in interaction design.
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1 INTRODUCTION
Curiosity is the intrinsic drive for new information [24, 26]. Psychol-
ogists distinguish curiosity from the general desire for information
for its underlying motivation being completely intrinsic, i.e., having
no immediate external benefit [4, 22, 24, 26, 41]. Essentially, humans
seek knowledge and have a desire to know things just “out of curios-
ity,” with no expectation of direct and immediate utility. As such,
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Figure 1: (Top) Illustration of the information gathering task
domain; user asks the robot to check the content of a box (A-
H). (Bottom) Corresponding real-world setup.

curiosity can have short-term costs (e.g., time or effort spent explor-
ing and learning) without necessarily having long-term benefit (e.g.,
gaining useful new information). Curiosity is nonetheless consid-
ered a desirable trait [14], and is believed to be at the core of human
development, learning, and even scientific discovery [38, 40, 42, 45].
Curiosity has even been found to be an antecedent for academic
success, on par with—and distinct from—intelligence [51].

Researchers are interested in computationally modeling curios-
ity as a mechanism to drive learning and knowledge acquisition
in robots and artificial agents [34]. These effort are usually framed
in the context of reinforcement learning and provide the agent
with a reward for actions that produce new, novel, or surprising
information and effects. For instance, Oudeyer [32] highlights a
demonstration of operationalized curiosity in the form of a robot
arm exploring its immediate environment with a curiosity based
policy that rewards new and novel experience. The curious robot
armwill eventually discover a controller joystick, unlocking a litany
of novel experience, and it will stop free roaming and focus solely
on “mastering” what the joystick is capable of [13, 32]. When im-
plemented as an augmentation to machine learning agents, these
behaviors can guide the agent’s learning through a high dimen-
sional state space, but the actions they generate may or may not
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relate to accomplishing the current task. Although these curious,
exploratory behaviors have demonstrated utility in simulated or
limited domains, it is conceivable that the off-task actions that they
generate may be perceived negatively, especially when the task is
in service of humans, since the long-term benefits are not clear.

In this paper, we explore how a robot’s curiosity-driven off-task
actions are perceived by humans and what factors might mitigate
potential negative perceptions. First, we identify qualitatively dif-
ferent behaviors of a curious robot using a computational model of
intrinsic motivation. Second, we design and validate a questionnaire
to measure people’s perception of a robot’s curiosity and compe-
tence. Finally, we perform three empirical studies, comparing a
range of robot off-task actions. In contrast to past work on inter-
actions with robot curiosity, which have been unconcerned with
human perceptions, the current study gauges human perceptions
of a robot running a program modeled on curiosity and examines
how an autonomous robot’s behaviors influence those perceptions.

2 RELATEDWORK
Modeling Curiosity in AI and Robotics. A large body of work on ro-

botics and artificial agents has explored the computational modeling
of curiosity as intrinsicmotivation [6, 12, 17, 27, 29, 30, 33, 35, 36, 52].
Oudeyer & Kaplan offer a typology of these models, contrasting
approaches that reward different types of novelty [34]. Reflecting
the ambiguity of psychological definitions and representations of
curiosity, there is considerable variation in what mechanisms com-
putational researchers call curiosity. While some produce off-task
actions, which are the primary interest in this paper, others, like
active learning, have been equated with curiosity [49], though they
optimize for expected learning gains that directly benefit ongoing
tasks [2, 9, 46]. Similarly some work refers to strategies for guiding
exploration for information gathering as curiosity, outside the con-
text of learning and intrinsic rewards [15, 31]. Other work equates
off-policy learning with curiosity [28, 53].

Curiosity in HRI. In the field of human-robot interaction (HRI),
research on robot curiosity is sparse and has mostly focused on
sparking or promoting curiosity in human counterparts, particu-
larly children. For instance, robots have been used in classroom
settings to leverage interest for a novel artifact (i.e., a robot) in
order to encourage curiosity-related behaviors like question asking
in students [43]. Robots have similarly been positioned as interac-
tive peers aimed at increasing curiosity in children by displaying
curious behaviors (e.g., wondering out-loud, asking questions, ex-
pressing desire to learn) for participants to mirror or to teach them-
selves [16, 48]. In many instances, the conception of robot curiosity
has largely been inconsequential and behavioral representations of
curiosity (i.e., whether the robot truly acts “curious”) are only mea-
sured by the success of impacting behavioral outcomes in human
participants (e.g., does the human behave with more curiosity).

Perceptions of Robots. Understanding how people perceive robots
is critical to their long-term adoption because a robot—even a very
capable or intelligent one—is subject to the whims of human percep-
tions. Indeed, a fundamental understanding of HRI is that humans
will place exceptional meaning into any agent in motion [20] and
that people will ascribe complex social and mental traits to any

object of significant complexity [37]. However, careful behavioral
designs can help control these subjective judgements by provid-
ing humans with a conceptual framework that they can implic-
itly understand [1, 20, 44, 47]. For instance, past work has found
robots which employ targeted implicit communication techniques
like facial expressions or gestures can increase performance in
collaborative tasks [5], be more persuasive [10], and seem more
approachable [19]. Similarly, well designed and domain sensitive
communication techniques can help robots seem competent and
likeable when recovering from errors [25].

More recently, research on robotic curiosity has begun to build
upon this by attempting to assess how external expressions of
curiosity translate to understanding internal states of robots by
human counterparts. In an experimental study with adults, Ceha et
al., [8] used external expressions of curiosity (e.g., showing interest
in new information, saying “I am curious about...”) to imply an in-
ternal state of curiosity during an educational game and found that
participants who engaged with a robot designed to seem curious
were more likely to rate the robot as curious than those in a neu-
tral condition. This is particularly important because observable
curious behaviors have been difficult to define and capture [18].
Moreover, this demonstrates that the success and outcome of a
robot performing a task or expressing complex internal states can
be fundamentally altered by how it is seen to do it [39, 47]. As
such, implementations of an internal construct, such as curiosity,
are likely incomplete without also capturing their correct external
representations.

3 DOMAIN
We studied perceptions of robot off-task actions in the context of
information gathering. Mobile robots with sensors are well suited
for assisting people in gathering physically distributed information
and have been used for this purpose across different settings, from
underwater environments [21] to human-populated buildings [11].
In our domain, the robot assists the user by inventorying boxes, as
it might in a retail store, warehouse, or data center. This domain’s
action space consists solely of information gathering actions, rather
than other behaviors like physical manipulation of objects, allow-
ing us to focus on curiosity, which is principally about gathering
information.

We studied the instance of this domain shown in Figure 1, consist-
ing of 8 boxes spread across a room. The simplicity of the scenario
makes it obvious what the robot should do to accomplish its tasking
while still providing opportunities for off-task actions.

3.1 Markov Decision Process
Our domain can be formalized as a Markov Decision Process (MDP),
enabling us to apply a common model of intrinsic motivation by
adjusting the reward function. The MDP is defined by the tupleM
= (S, A, T , R) where:

• S is the set of possible configurations that the world can be
in. The state variables in our domain include (1) a binary
representation of whether it knows the contents of each box
(unknown before the box has been checked), (2) the index
of the box corresponding to the person’s latest information
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Figure 2: Examples of qualitatively distinct behaviors that
result from different reward functions.

request, and (3) the robot’s location (near one of the key
objects in its environment).

• A is the set of possible actions that the robot can perform.
It includes (1) navigating to one of the key objects in the
environment (boxes or the person’s table), (2) checking the
contents of a box, and (3) delivering information to the per-
son when it is near the table.

• T is the transition function specified with a probability dis-
tribution over next states for different state-action pairs. For
simplicity we chose to use deterministic transitions, meaning
that actions always have the intended consequence. Navi-
gating to a box always results in the robot being at that box
in the next state, and checking a box always results in the
robot knowing what is in the box.

• R is a deterministic reward function that maps a state-action
pair to a reward value, R : S × A → R.

We define the reward function (Eq. 1) as the sum of intrinsic and
extrinsic rewards. The intrinsic reward Rint is a positive constant rint
received when the robot checks a box whose content is currently
unknown. This rewards the robot for gathering novel information,
similar to the information gain motivation in Oudeyer & Kaplan’s
typology [34]. The extrinsic reward has two components; a one-time
task reward of rtask received when the robot delivers the requested
information to the user, and a negative living reward rstep incurred
at every timestep.

R(s,a) = Rint(s,a) + Rtask(s,a) + Rstep(s,a) (1)

3.2 Behaviors
The MDP from Section 3.1 can be solved using value iteration to
obtain a policy π : S → A, which maps each state to the action
that will maximize cumulative expected reward over a time horizon.
Different values of rint, rtask, and rstep in the reward function Eq. 1
result in policies that chose different actions in the same state.
Rolling out these policies produce qualitatively distinct behaviors
in terms of tendencies towards off-task actions, examples of which
are shown in Figure 2.

When rtask > rint ≫ rstep the robot collects and delivers the
requested information as soon as the episode starts to get maximal
reward as soon as possible (Figure 2a). In contrast, when rtask < rint
the robot first collects all possible information before it delivers the
requested one, going completely off task (Figure 2d).

The number of off-task actions can be modulated by modifying
Rstep(s,a) to depend on the action a, for instance, to reflect how long
it takes to execute the action. While large task rewards (rtask ≫ rint)
will still result in immediately delivering the information, intrinsic
rewards that are almost as high as the task reward (rtask ≈ rint)
push the robot towards actions with minimal cost, (i.e. take the
least time to perform) rather than trying to deliver the requested
information right away. Depending on how the difference between
intrinsic and task rewards compares to the cost of actions, the
robot might perform more (Figure 2c) or fewer (Figure 2b) off-task
actions, before completing the task. Lastly, modifying the intrinsic
reward to consider factors other than novelty of information, such
as how challenging it is to obtain the information, we see that the
robot’s off-task actions can be directed towards different parts of
the environment (Figure 1).

4 METHOD
Informed by the types of behaviors that emerged from the model,
we endeavored to evaluate human impressions of a range of off-task
actions. We captured videos of interactions, giving us a high degree
of control over extraneous variables like timing and motion that
may impact perceptions of the robot. The use of videos also facili-
tated a large online survey experimental design, enabling inference
about many conditions.

4.1 Robot Platform
The Mayfield Kuri robot is a mobile social robot equipped with
a pan-tilt head, one degree-of-freedom actuated “eye-lids”, and a
holonomic wheeled base. The robot interacts using a microphone
array, a speaker, and a chest LED array. For our experiments, we
used nodding and blinking animations as well as beep sounds that
were created by the robot’s designers. The robot does not provide
a default text-to-speech implementation, so we used the SLT voice
from the Festival Speech System HTS 2007 engine1 with its pitch
raised by 165 cents. We used the default autonomous navigation
implementation, wherein the robot localizes itself against a prebuilt
map using a short range LIDAR sensor.

4.2 Videos
We constructed a physical version of our domain and recorded
videos of a robot fulfilling a user’s request, frames from which can
be seen in Figure 3.

Recording was conducted in a classroom with a camera statically
positioned to capture the user and eight boxes that were placed in
the same arrangement as our domain model. The videos depict the
boxes labeled with numbers 1-8, however, because the assignment
of the numbers is randomized in different conditions, we refer to
boxes by their names from Figure 1 for consistency. We included a
backpack and a trashcan in the scene as additional targets for the
robot’s checking behavior.

The common elements across all videos are that

• the user asks the robot to “check box [N].” The requested
number always corresponds to box E.

1http://www.cstr.ed.ac.uk/projects/festival/

http://www.cstr.ed.ac.uk/projects/festival/
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• the robot plays a nodding animation and emits an affirmative
beep. It turns to begin the task.

• the user sits at a table in front of a laptop and does not look
at the robot as it works.

• the user updates a label placed on a nearby whiteboard,
removing the number corresponding to the current request
and placing the number of the next request.

• the robot fulfils the user’s request. The box check action is
denoted by the robot navigating to the edge of a box, tilting
its head down and making a beep sound.

• the robot returns to verbally report that “box [N] contains
[X]”. We randomly selected a common household good, like
mugs or books, and a number as the contents to be reported.

All of our manipulations introduce off-task checks of a box or
other object. Off-task checks play the same animation but emit
an alternative beep sound, connoting that the robot distinguishes
between the actions. Some manipulations append an explanation
or additional information to the robot’s final report.

The videos were recorded with blank labels, enabling us to em-
phasize that each clip depicts a wholly distinct interaction by using
compositing software to randomize the assignment of the numbers
across conditions in an experiment. To further reinforce this, we
color tinted the robot so that each conditions’ robot had a different
visual appearance. During editing, we also slightly accelerated the
robot’s motion, and controlled the timing of check events and the
overall length of comparable clips.

4.3 Participants
All participants were recruited via Amazon Mechanical Turk and
compensated between $1 and $1.5. Participation was limited to
workers with a submission acceptance rate above 95% from predom-
inantly English-speaking countries. All procedures were approved
by the University of Washington’s Institutional Review Board.

4.4 Procedure
In each experiment, participants were told that they would be rating
their impressions of different robots that were designed to help a
user inventory boxes in an office. After providing consent, partici-
pants watched an example video which showed a near-complete
interaction, designed to familiarize them with the robot and sce-
nario. The instructional video included annotations for the user,
the robot, the boxes, the “next task” placed on the whiteboard by
the user, and a textual label “box check” that displayed as the robot
tilted its head down towards the target box. The example video was
intentionally cut between the target box check and contents report
to avoid priming the user to expect the robot to return directly.

Participants were shown either 4 or 5 different videos, depending
on the experiment. The order of the videos was randomized and
fully counterbalanced in all experiments. For each video, partici-
pants filled out a short questionnaire gathering their impression of
the robot. Participants’ were not allowed to advance past a video
until they watched it completely and responded to the required
items. The video player allowed participants to freely scrub through
and restart the video, however no numeric representation of the

duration of the clip was displayed. After viewing all conditions, par-
ticipants completed additional questions. Finally, we asked partici-
pants to provide demographic information, any overall comments,
and thanked them for their participation. The interface and videos
used are provided in the auxiliary materials2.

4.5 Measures
4.5.1 Questionnaire items. To our knowledge, there are no vali-
dated instruments for perceptions of curiosity. The closest is the
Five-dimensional Curiosity Scale developed by psychologists to
assess curiosity in people [23]; however, this instrument is meant
for self assessment and does not translate well to evaluation of a
non-human agent.

Because we are primarily interested in the relationship between
perceptions of the robot’s competence and curiosity, we adopted
items from the Godspeed Questionnaire’s “Intelligence” scale [3]
and created additional items that we thought would reflect these
attributes. To maintain compatibility with Godspeed items, we used
5-point semantic differential format.

We conducted a pilot study in which 48 participants, aged be-
tween 19 and 62 (M = 36.0, SD = 10.95, 31 male, 17 female), rated
their impression of the robot on each of 4 videos. Participants were
split evenly between seeing draft versions of the videos used in
Experiments I and II, described in Sections 5 and 6 respectively.

We conducted an exploratory factor analysis with promax rota-
tion and used parallel analysis to determine cutoffs for the eigen-
values of the factors, yielding two factors, shown in Table 1. The
first factor, which we call “competence” for its similarity with the
RoSAS factor of the same name [7], includes all of the Godspeed
Intelligence items we adopted, as well as three of our new items.
The second factor, which we call “curiosity,” consists of three the-
matically aligned items. A correlation of .12 between the factors
indicates that they are largely independent. Both showed good reli-
ability, with curiosity α = .83 and competence α = .91. Together the
factors account for 34% of the observed variance.

While items for likeability, humanlikeness, intrusiveness did
not load onto the two primary factors, we decided to keep them
for further studies because they nonetheless measure important
possible impacts of off-task actions.

4.5.2 Open-endedQuestions. For each video, we asked users to
(1) “In a few words, describe what the robot did.”
(2) (Optionally) “Please explain any significant factors in your

responses”
We hoped these questions would capture how participants con-

ceived of the robot’s actions. In piloting, we observed that most
participants provided only factual narration (e.g. “the robot checked
box 4”) when prompted to describe a video, however we kept the
question because we found that inaccurate or garbled responses
were a reliable indicator of spam submissions.

After participants finished rating all videos, we asked them con-
sider all of the videos they had seen and to answer two open-ended
questions:

(1) “What aspects of the robot’s behaviors stood out to you?”

2To further facilitate replication and extension, the source footage and compositing
resources are also archived: https://doi.org/10.5281/zenodo.3600600

https://doi.org/10.5281/zenodo.3600600
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CON
(I, II, III)

H: Check box 8. R: [Beep] R: Box 8 has five pans.

D1
(I,II,II)

H: Check box 6. R: [Beep] R: [Beep] R: Box 6 has one cutting board.

D2
(II)

R: Box 5 has six mugs.R: [Beep] R: [Beep]

... ...

H: Check box 5.

NON
(III)

R: Box 5 has twelve jars.R: [Beep] R: [Beep]H: Check box 5.

INF, 
EXC, EXU

(III)

R: I also checked Box 
3. It has eight cups.

H: Check box 5. R: [Beep] R: [Beep]

...

R: Box 5 has six mugs.

Figure 3: Frames from the videos used in the experiments with the captions included above each frame. The first column
indicates the conditions and experiments (I-III) in which the video was used. For conditions EXC and EXU, the explanation
offered by the robot (shown in the blue box) was different.

Table 1: Loading matrix

Variable Factor 1 Factor 2

Inefficient-Efficient .922 −.037
Ineffective-Effective .834 .049
Unfocused-Focused .752 −.018
Irresponsible-Responsible .600 .030
Incompetent-Competent .583 −.032
Unintelligent-Intelligent .250 .047
Indifferent-Investigative −.009 .918

Uninquisitive-Inquisitive −.015 .497
Incurious-Curious .034 .341

Dislike-Like .194 −.015
Unintrusive-Intrusive −.023 −.014
Machinelike-Humanlike −.012 −.015

(2) “In your own words, describe what the robot was doing
when it did things besides what the user asked it to do.”

These questions were phrased to avoid biasing participants to-
wards specific language and thereby collect the widest possible
range of responses. In contrast with the per-video description ques-
tion, a large majority of participants responded to the concluding
description request with character attributions or free ranging spec-
ulation about the robot’s intent, as desired.

5 EXPERIMENT I: DISTANCE AND ORDER
The first study aims to uncover the impact of the presence of off-task
actions. We also investigate variations of off-task actions in terms
of the distance travelled to check the extra box and order in which
the requested and extra boxes are checked. We expected that off-
task actions would be recognized as expressions of curiosity, and
that the a longer distance traveled off-task may be perceived as a
stronger expression of curiosity. Similarly, we thought that a robot
that gave precedence to an off-task action by pursuing it before
attending to the user’s request may similarly be viewed as more
strongly curious.

Hypothesis 1: A robot that takes an off-task action is perceived
as more curious than one that does not.

Hypothesis 2: The further a robot travels off-task, the more curi-
ous it will be perceived to be.

Hypothesis 3: A robot that takes an off-task action first will be
liked less than a robot that takes an off-task action after an
on-task action.

Conditions. We leveraged the procedure described in Section 4.4
to conduct a within-subjects comparison of 4 conditions:
Control (CON): The robot checks box E and reports its contents.
Distance 1 (DS1): The robot checks box E, then checks box B and

reports the contents of box E.
Distance 2 (DS2): The robot checks box E, then checks box H and

reports the contents of box E.
Distance 1 Before (D1B): The robot checks box B, then checks

box E and reports its contents.

Participants. 72 participants, aged 20-70 (M = 35.2, SD = 11.3,
39 male, 32 female, 1 non-binary) completed the study.

Results. Curiosity showed acceptable reliability (α = .70) and
competence showed excellent reliability (α = .91). We conducted
pairwise dependent t tests comparing conditions for each measure,
applying the Holm-Bonferroni adjustment to the resultingp values3.
The results of these tests for the competence and curiosity scales
are given in Table 2 and summarized in Figure 4.
H1 was supported: Each manipulated condition resulted in the

robot being perceived as significantly more curious when
compared to the control.

H2 was not supported: DS1 and DS2 were not perceived as distin-
guishable levels of curiosity.

H3 was not supported: DS1 and D1B showed no significant differ-
ence in curiosity.

Open-ended comments by participants explaining their ratings
included attributions of curiosity and inquisitiveness to the robots

3All statistical calculations were performed with the Pingouin Python package [50].
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Table 2: Pairwise comparisons for Experiment I

A B MA SDA MB SDB t (71) p д

Co
m
pe
te
nc
e

CON DS1 4.30 0.71 3.67 0.93 6.42 <.001 0.76
DS2 3.46 0.92 7.64 <.001 1.03
D1B 3.60 0.94 6.47 <.001 0.84

DS1 DS2 3.67 0.93 3.46 0.92 2.43 .053 0.23
D1B 3.60 0.94 0.66 .512 0.07

DS2 D1B 3.46 0.92 3.60 0.94 −1.82 .145 −0.16

Cu
rio

si
ty

CON DS1 3.10 1.13 3.76 0.85 −5.05 <.001 −0.66
DS2 3.59 0.84 −3.51 .003 −0.50
D1B 3.64 0.79 −3.91 .001 −0.56

DS1 DS2 3.76 0.85 3.59 0.84 2.07 .126 0.20
D1B 3.64 0.79 1.31 .390 0.14

DS2 D1B 3.59 0.84 3.64 0.79 −0.69 .495 −0.06

1 2 3 4 5

CON

DS1

DS2

D1B

Competence

1 2 3 4 5

CON

DS1

DS2

D1B

Curiosity

Figure 4: Competence and curiosity ratings across the four
conditions in Experiment I. Whiskers show 1.5 times IQR.

that performed off-task actions, some seeing it as a positive attribute,
e.g., “The robot investigated an extra box, but it was on the way to
the target box. While not as efficient as the direct route it still took
advantage of pathway to get additional information.” (D1B) or “The
extra stop which was outside of the primary mission makes the robot
seem more inquisitive about the surrounding environment.” (DS1).
Another participant supported this view with a comment about the
robot that does not perform any off-task actions “It can be nice to
have a task performed exactly as requested, but feels like a missed
opportunity to quickly take note of the contents in other boxes along
the way.” (CON).

While increasing the perception of curiosity, performing off-task
actions negatively impacted perception of competence. All manipu-
lations resulted in significantly lower competence ratings compared
to the control (Table 2). Participants commented on the off-task ac-
tions negatively, e.g., “robot seemed somewhat incompetent because it
checked a box it was not instructed to check”, or “not so good because
it made unnecessary stop at another box” (DS1). They attributed
the off-task actions to a number of different reasons. Some partici-
pants thought the off-task action was due to an error, complaining
that they could not trust the robot’s report, e.g., “I’m not sure if
it’s correctly reporting the contents of box 6 or incorrectly reporting
the contents of the last box it looked in” (DS1). Others attributed
agency to the robot, e.g., “it was distracted”, “he appears to have Ro-
bot ADHD”, “acted out of order”, “decided on its own to check another

box” (DS1). In some cases participants did not understand why the
off-task actions were happening, e.g., “checked a box it wasn’t told to
for unknown reasons” (DS1). Other comments supported the higher
perceived competence of the control condition, e.g., “did exactly as
instructed”, “performed the task perfectly”, “it was fast and effective”.

Some participants complained about the robot’s lack of an expla-
nation or report regarding the off-task actions: “This robot checked
more boxes than asked, but did not give a reason for it” (DS1) or
“It should have at least reported its findings” (DS1). This inspired
some strategies the robot could use to mitigate the perception of
lower competence due to off-task actions, which we explore in
Experiment III (Section 7).

While there was no difference between DS2 and other off-task
conditions, some participants called out the difference in distance
in their comments: “I still appreciate the apparent curiosity, and it
comes off as less annoying when the additional box being checked
was one along the path” (D1B). Similarly, the order did not have a
statistically significant effect on competence or curiosity, but was
mentioned in comments: “it check what it wanted to before checking
what it was told to check I felt it was inefficient” (D1B).

All manipulations were seen as more human-like, more intru-
sive, and were liked less than the control. However, there were no
significant differences between the different manipulations (DS1,
DS2, D1B).

6 EXPERIMENT II: PAYOFF AND RELEVANCE
The negative impact of off-task actions on the perceived competence
of the robot prompted us to consider whether participants would
be sensitive to whether an off-task action showed a clear utility.

Hypothesis 4: Off-task behaviors that show utility are perceived
as more competent than those that do not.

Hypothesis 5: The less relevant an off-task action is to the current
task, the more curious the robot is perceived to be.

Conditions. We leveraged the procedure described in Section 4.4
to conduct a within-subjects comparison of 4 conditions. We used
the Control and Distance 1 conditions from Experiment I as a basis
and compared them against two new manipulations:

Distance1 Payoff (PAY): The robot checks the user-requested
box, then checks box B, and reports the contents of the
user-requested box. In contrast to DS1, the next-task that
the user posts to the board is box B.

Distance1 Non-box (NON): The robot checks the user-requested
box, then checks a trashcan, and reports the contents of the
user-requested box. The trashcan is placed at comparable
relative distance as box B.

Participants. 72 participants, aged 19-73 (M = 36.0, SD = 11.53,
44 male, 28 female) completed the study.

Results. Curiosity showed acceptable reliability (α = .76) and
competence showed excellent reliability (α = .93). We conducted
pairwise dependent t tests comparing conditions for each measure,
applying the Holm-Bonferroni adjustment to the resulting p values.
The results of these tests for the competence and curiosity scales
are given in Table 3 and summarized in Figure 5.
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Table 3: Pairwise tests for Experiment II

A B MA SDA MB SDB t (71) p д

Co
m
pe
te
nc
e

CON DS1 4.27 0.75 3.56 0.99 6.05 <.001 0.81
PAY 3.79 0.97 4.13 <.001 0.55
NON 3.82 1.00 3.92 .001 0.51

DS1 PAY 3.56 0.99 3.79 0.97 −2.41 .037 −0.23
NON 3.82 1.00 −2.72 .025 −0.26

PAY NON 3.79 0.97 3.82 1.00 −0.30 .767 −0.03

Cu
rio

si
ty

CON DS1 3.24 1.08 3.97 0.84 −6.01 <.001 −0.76
PAY 3.86 0.94 −4.70 <.001 −0.61
NON 3.54 0.95 −3.33 .004 −0.29

DS1 PAY 3.97 0.84 3.86 0.94 1.47 .145 0.13
NON 3.54 0.95 4.44 <.001 0.48

PAY NON 3.86 0.94 3.54 0.95 3.15 .005 0.34

1 2 3 4 5

CON

DS1

PAY

NON

Competence

1 2 3 4 5

CON

DS1

PAY

NON

Curiosity

Figure 5: Competence and curiosity ratings across the four
conditions in Experiment II. Whiskers show 1.5 times IQR.

H4 was supported. An off-task action that displayed potential to
benefit the user resulted in higher competence ratings.

H5 was not supported. Making a trashcan the target of the off-task
behavior resulted in lower ratings of curiosity.

Participant comments indicated that they noticed the payoff of
the off-task action in the PAY condition. Some perceived it positively,
e.g., “It looked like the robot was checking box 5 ahead of time” (PAY),
while others were unsure about giving the robot credit “The robot
went to the next box. Might have been a coincidence, perhaps not.”
(PAY).

The NON condition being perceived as less curious was surpris-
ing, but might have been due to participants not perceiving the
robot’s action towards the trash can as checking or not even notic-
ing the trashcan because it blended into the scene (e.g., it was not
labeled like the boxes), despite the robot making a “beep” to indicate
its checking action. Only 13 out of the 72 participants mentioned
the trashcan in their open-ended description of the video, some ex-
pressing uncertainty about the off-task action “I’m not sure if it was
(incorrectly) checking the trash can or not” (NON). This misunder-
standing about the off-task action might also be the reason for the
NON condition being perceived as significantly more competent
than DS1, consistent with the CON, which has no off-task actions.

DS1 was perceived as less likeable than the control, but dif-
ferences between other conditions where not significant. As in
Experiment I, robots that took off-task actions were perceived as

more intrusive, though this impact was not significant in the NON
condition. There were no significant differences in humanlikeness.

7 EXPERIMENT III: EXPLANATIONS
Experiment II indicated that users are sensitive to the apparent
utility of a robot’s off-task actions, however this impact is largely
out of the robot’s control. This, and participant feedback, motivated
us to consider ways in which the robot could more directly control
perceptions of its actions and mitigate negative attributions by
providing explanations.
Hypothesis 6: A robot that acknowledges its off-task behavior is

perceived as more competent than one that does not.
Hypothesis 7: A robot that explains an off-task action is perceived

as more competent than one that merely acknowledges the
action.

Conditions. We leveraged the procedure described in Section 4.4
to conduct a within-subjects comparison of five conditions. We
used the Control and Distance 1 conditions as a basis and compared
them against three new manipulations:
Extra Info (INF): The robot checks the user-requested box, then

checks box B, and reports the contents of the user-requested
box. The robot then says that it “also checked box [B],” and
reports its contents.

Explanation Curious (EXC): The robot checks the user-requested
box, then checks box B, and reports the contents of the user-
requested box. The robot then says that it “also checked box
[B], because [it] was curious.”

Explanation Useful (EXU): The robot checks the user-requested
box, then checks box B, and reports the contents of the user-
requested box. The robot then says that it “also checked box
[B], because [it] thought it would be useful to know.”

Participants. 120 participants, aged 18-69 (M = 36.1, SD = 11.3,
70 male, 49 female, 1 non-binary) completed the study.

Results. Curiosity showed acceptable reliability (α = .79) and
competence showed excellent reliability (α = .92). We conducted
pairwise t tests comparing conditions for each measure, applying
the Holm-Bonferroni adjustment to the resulting p values. The
results of these tests for the competence and curiosity scales are
given in Table 4 and summarized in Figure 6.
H6 was not supported. A robot that acknowledged taking an off-

task action by reporting the additional information (INF) was
not perceived as more capable than one that did not (DS1).

H7 was partially supported. When compared to a robot that re-
ported the extra information it gathered (INF), a robot that
offered an explanation based on utility (EXU) was perceived
asmore competent. A robot that attributed the off-task action
to curiosity (EXC) was not perceived to be more competent.

Although reporting the information obtained through the off-
task action did not improve perceived competence, some partici-
pants commented positively about it, e.g., “On the one hand, the
extra time lost by checking the unasked box is annoying, the fact that
it reported the information helped mitigate my dissatisfaction.” (INF).
Similarly some participants appreciated the robot explaining its
off-task action with curiosity, e.g., “Robot was honest in its reason
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Table 4: Pairwise tests for Experiment III

A B MA SDA MB SDB t (119) p д

Co
m
pe
te
nc
e

CON DS1 4.36 0.63 3.42 1.02 9.30 <.001 1.13
INF 3.53 0.96 10.04 <.001 1.04
EXC 3.58 0.87 9.49 <.001 1.04
EXU 3.76 0.91 7.48 <.001 0.77

DS1 INF 3.42 1.02 3.53 0.96 −1.57 .237 −0.11
EXC 3.58 0.87 −2.58 .033 −0.17
EXU 3.76 0.91 −4.26 <.001 −0.35

INF EXC 3.53 0.96 3.58 0.87 −0.91 .364 −0.05
EXU 3.76 0.91 −3.52 .003 −0.24

EXC EXU 3.58 0.87 3.76 0.91 −2.93 .016 −0.20

Cu
rio

si
ty

CON DS1 2.80 1.02 3.98 0.81 −10.43 <.001 −1.28
INF 4.10 0.79 −11.46 <.001 −1.43
EXC 4.42 0.68 −13.84 <.001 −1.90
EXU 4.23 0.71 −12.48 <.001 −1.65

DS1 INF 3.98 0.81 4.10 0.79 −1.79 .076 −0.15
EXC 4.42 0.68 −6.88 <.001 −0.59
EXU 4.23 0.71 −4.13 <.001 −0.33

INF EXC 4.10 0.79 4.42 0.68 −6.32 <.001 −0.44
EXU 4.23 0.71 −2.45 .032 −0.18

EXC EXU 4.42 0.68 4.23 0.71 3.78 .001 0.27
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Figure 6: Competence and curiosity ratings across the four
conditions in Experiment III. Whiskers show 1.5 times IQR.

for looking at the other box.” (EXC) and “The robot checked a box it
didn’t need to, but gave an explanation of why it checked it.” (EXC).
Many comments regarding the robot’s explanation that appealed to
utility were also positive, with attributions of higher intelligence,
agency, and humanlikeness to the robot, e.g., “This time the robot
is deciding what is important beyond the commands of the man in
the video.” (EXU), “The robot showed signs that it is ‘thinking for
itself’ and not just following instructions” (EXU). One participant
explicitly called out the relation to utility and how that reduces the
attribution of off-task actions to curiosity: “Unlike the other scenario,
this would be a robot that acted out of a perceived benefit instead of
curiosity.” (EXU).

Despite potential benefits of sharing extra information or ex-
planations, all conditions were still perceived as significantly less

competent than the control condition. Negative participant com-
ments about these conditions were similar to the off-task action
conditions from Experiments I and II, e.g., “The robot completed the
task it was assigned but also did something that was not requested.
This could have caused a delay if the task had been urgent.” (INF), “I
would prefer the robot to follow instructions exactly as told.” (EXC),
and “The robot did not execute its orders efficiently.” (EXU).

As in Experiments I and II, all manipulations were perceived as
more intrusive than the control. A robot that provided a utility-
based explanation (EXU) was perceived as less intrusive than a
robot that provided a curiosity motivation (EXC). All manipulations
were perceived as more humanlike than the control. The curiosity-
based explanation (EXC) was perceived as more humanlike than the
baseline detour (DS1) and the extra information (INF) condition. All
manipulations were liked less than the control. Differences between
conditions were not significant.

8 DISCUSSION
Implications. These findings suggest that (1) it is possible to

design off-task, exploratory robot behaviors to be perceived as “cu-
rious” (not merely distracted or broken), (2) curious robots might
be perceived as less competent than non-curious robots, but (3)
providing explanations about the robot’s curious behaviors can
mitigate some of those negative impacts. Together, these findings
inform the design of curious robots that might take off-task actions,
like exploring additional boxes while fetching or looking for short-
cuts while navigating. If it can be acceptable for robots to engage
in curiosity-driven exploration, interrupting assigned tasks, then
it might be even more acceptable for robots to explore during the
robots’ “downtime.”

Limitations and Future Work. As with many HRI studies, these
studies represent responses from a particular set of participants to
a particular robot in a particular setting. We have done our best
to thoroughly describe these participants and methods so that oth-
ers can reuse this approach to explore broader sets of participants,
robots, and settings. In order to test a large set of robot behaviors,
we chose to run these studies online, constraining participants to
the role of observers, not interactants. Further, we could not control
the immersiveness of the experience (e.g., minimize interruptions,
control screen sizes). These limitations can be addressed by run-
ning in-person lab studies. The current studies provide guidance for
determining the variables worth exploring in the future. Building
upon this work, it will be important to explore the human interac-
tant perspective, not only a bystanders perspective; longer-term
time periods of interaction; and different types of robot roles in
relation to the human interactants. Expanding this work to ex-
plore more interactive, self-directed robotic agents (as opposed to
command-and-control style robots) will enable us to understand
the larger design space of curious robot behaviors and interactions
with people.
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