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Abstract—It is difficult to run long-term in-the-wild studies
with mobile robots. This is partly because the robots we, as
human-robot interaction (HRI) researchers, are interested in
deploying prioritize expressivity over navigational capabilities,
and making those robots autonomous is often not the focus of
our research. One way to address these difficulties is with the
Wizard of Oz (WoZ) methodology, where a researcher teleop-
erates the robot during its deployment. However, the constant
attention required for teleoperation limits the duration of WoZ
deployments, which in-turn reduces the amount of in-the-wild
data we are able to collect. Our key insight is that several
types of in-the-wild mobile robot studies can be run without
autonomous navigation, using wandering instead. In this paper
we present and share code for our wandering robot system,
which enabled Kuri, an expressive robot with limited sensor
and computational capabilities, to traverse the hallways of a
28,000 ft2 floor for four days. Our system relies on informed
direction selection to avoid obstacles and traverse the space, and
periodic human help to charge. After presenting the outcomes
from the four-day deployment, we then discuss the benefits of
deploying a wandering robot, explore the types of in-the-wild
studies that can be run with wandering robots, and share pointers
for enabling other robots to wander. Our goal is to add wandering
to the toolbox of navigation approaches HRI researchers use,
particularly to run in-the-wild deployments with mobile robots.

Index Terms—robot navigation, in-the-wild deployment, wan-
dering, Wizard of Oz, robots asking for help

I. INTRODUCTION

Over the last several years, the human-robot interaction
(HRI) community has been moving towards in-the-wild stud-
ies. In-the-wild studies take place directly in “settings where
people are and will increasingly engage with robots” and
reveal insights about “how people will respond to robots in
complex social settings and how robots will affect social
dynamics in situ” [1]. In fact, in-the-wild studies have become
so important to our community that the entire theme of HRI20
was “Real World Human-Robot Interaction.”
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Fig. 1. Kuri in the halls of our academic building. Kuri is an expressive and
engaging robot with low sensing and computation capabilities. Its lidar can
only see up to 7.5 ft, insufficient to localize in long, wide hallways. Further,
a significant portion of its compute gets used by localization algorithms.
Motivated by these limited capabilities, in this paper we describe a system for
“wandering” that enabled Kuri to traverse our large hallways for four days.

However, in-the-wild studies with mobile robots are difficult
to run. This is partly because our research community’s
foci are often on interaction, so we are interested in de-
ploying robots that prioritize expressiveness and interactivity
over navigational capabilities. For example, consider Mayfield
Robotics’ Kuri. Kuri has an engaging physical design and uses
expressive animations composed of head movements, lights
and vocalizations to portray emotions (e.g., happiness, sadness,
sleepiness). However, Kuri’s lidar has a max range 7.5 ft
(Fig. 1), which prevents it from localizing in wide hallways
using range-based techniques. Further, its on-board computer
has 1.5GB RAM, which makes it challenging to localize
using vision-based techniques [2]. Kuri is one example of
several interactive mobile robots (Sec. II-A) that have difficulty
running off-the-shelf autonomous navigation algorithms.

To account for the difficulty of running in-the-wild stud-



ies with interactive mobile robots, the HRI community has
relied on teleoperation—also referred to as Wizard of Oz
(WoZ) [3]—to set robots in motion. This can be seen in the
in-the-wild papers we publish; over the last 5 years, less than
half of the mobile robot in-the-wild papers used autonomous
robots, compared to over 90% for stationary robots1. How-
ever, teleoperating a robot requires constant attention, which
limits the duration of in-the-wild deployments. These shorter
deployments, in-turn, limit the types of insights and amount
of data we can collect from them.

In this paper, we present an alternative method for in-the-
wild deployments of mobile robots, that enables longer-term
deployments without the constant attention required by WoZ.
Specifically, our key insight is that several types of in-the-
wild studies of mobile robots can be run without autonomous
navigation, using wandering instead. To demonstrate this, we
begin with the aforementioned Kuri, which is highly expres-
sive but cannot localize in the wide hallways of our 28,000 ft2

floor. We then present and share the code3 for our wandering
robot system, which enables Kuri to traverse the hallways
over several days. This system relies on informed direction
selection to avoid obstacles and navigate long hallways, and
periodic human help via a chatbot to charge. This system
uses known techniques—wandering robot behavior and human
help—to achieve novel functionality—a multi-day deployment
of a low-spec mobile robot in a large indoor environment.

Our four-day deployment demonstrated that the robot was
able to traverse the 1,200 ft of hallways in the building
with little human help (around 0.5 hours over the 32 hour
deployment). We conclude this paper with a discussion of the
benefits of wandering robot deployments, the types of user
studies that can use wandering robots, and how to develop
wandering systems for other robot platforms.

II. RELATED WORKS

A. Interactive Robots

The interactive robots in our community (e.g., Kismet [4],
Keepon [5], Flobi [6], Geminoid [7], Leonardo [8], Cozmo,
Furhat, Jibo, Kuri, Pepper) typically prioritize communicative
expressivity through their industrial [9], [10] and interaction
designs [11], [12] as well as in their engineering design (e.g.,
using more actuators in the face than body, using more sensors
for recognizing human behaviors). While this prioritiziation
of expressivity makes sense when one is trying to study and
produce robots that engage with people, these designers and
engineers are also limited by financial budgets (e.g., research
grant limits, hardware cost targets) and technical budgets
(e.g., power, compute, weight). As such, they make trade-
offs with regard to where to spend precious time, money,
and effort. While it’s not impossible to develop robots that

1Based on papers from the HRI conference and Transactions on Human-
Robot Interaction from 2017-2021 that included the keyword “in the wild”
and had a robot deployment (source: ACM Digital Library). Of the 33
papers found, 9 involved autonomous mobile robots, 11 involved teleoperated
mobile robots, 13 involved autonomous stationary robots, and 1 involved a
teleoperated stationary robot (1 involved both mobile and stationary robots).

are capable in expressive behaviors, human interaction, and
dynamic navigation (e.g., the design goals set by Nexi [13]),
that is an exception, not the norm. Most interactive robots
prioritize certain design goals (e.g., human interactivity) over
other system design goals (e.g., robust navigation).

In many cases, a robot’s expressiveness trades off against its
navigation capabilities. Many interactive robots are not mobile
at all (e.g., ElliQ, Furhat, Jibo, Keepon, Mabu), likely because
their use cases do not require mobility. However, of the inter-
active mobile robots, some cannot navigate autonomously in
spaces any larger than a table top (e.g., Cozmo avoid cliffs, but
has no localization or navigation capabilities). Others struggle
with localizing and navigating in large spaces, mostly because
of short 3D sensor ranges and/or narrow sensor fields of view
(e.g., Kuri localizes and navigates through home residences,
but cannot localize in large offices or warehouses). Indeed,
many “social robots” require additional sensors and compute
in order to get them to localize and navigate. The NAO
has an accessory lidar head unit for improving its navigation
capabilities. Pepper also needs third-party lidar to navigate
through large spaces [14]. It is these mobile, interactive robots
that are the focus of the current work.

B. In-The-Wild Studies

In-the-wild studies have been used for many aspects of
human-robot interaction, including: investigating human re-
actions to deployed robots [15]–[22]; designing and testing
robots’ interaction, engagement, and learning techniques [17],
[23]–[25]; and collecting datasets that can be used to develop
algorithms that work in-the-wild [20], [26], [27]. However, as
was mentioned above, several of the in-the-wild studies that in-
volve mobile robots use teleoperation to move the robot around
(the Wizard of Oz methodology [3])1. For example, Taylor et
al. [27] uses a teleoperated mobile robot to gather ego-centric
data on human group movement around a robot, Fallatah et
al. [15] used a teleoperated mobile robot to investigate human
responses to a help-seeking robot, and Palinko et al. [28] uses
a teleoperated mobile robot to investigate the impact of robot
gaze on who interacted with it. However, relying on a wizard
to teleoperate the robot throughout its deployment takes up
valuable researcher time and attention, thereby limiting the
duration of the deployment.

A few notable examples of in-the-wild deployments that
involve autonomous mobile robots include: CoBot, an office
service robot [29]; SPENCER, an airport guide robot [18];
Hobbit, an in-home assistive robot for older adults [19]; and
Robovie, a shopping mall service robot [17]. These robots
required considerable researcher effort to build, design, and
maintain, which may not be feasible or practical, particularly
for labs whose speciality is not full-stack robot development.
We believe that the wandering robot system we present
will enable researchers to more easily run longer in-the-
wild deployments of mobile robots, deepening our collective
understanding of in-the-wild mobile robot interactions.



C. Indoor Robot Navigation

Most frequently, indoor robot navigation is divided into a
localization problem, that estimates a position based on kine-
matic and sensor models as well as a map of the environment,
and a planning and controls problem, that computes a path
for the robot and velocity commands to follow that path [30].
Because some robots lack the sensors to precisely localize,
or the computational power to run localization algorithms
[31], [32], research has developed techniques for localization-
free coverage, or patrol. These approaches use only contact-
sensors, and have the robot move straight until hitting an
obstacle, and then rotate [33]–[35]. Due to these techniques’
efficacy, low setup time, and minimal hardware cost, similar
methods have been used in commercially successful robot
vacuum cleaners for over a decade [36]. However, these
methods are undesirable if the robot must avoid collisions.

Recently, there have been several research efforts to move
away from requiring range sensors to localize. One such
direction involves using visual and inertial information to track
the robot [37]. A visual tracking estimate of sufficient quality,
coupled with an exploration method, can enable a robot to
complete a coverage task [38]. Another such direction involves
using learned visual representations of the environment to
enable point-to-point navigation [39]. Recent work has shown
that it is possible to create topological maps of environments,
enabling robots to reach even far-away image goals by nav-
igating through a sequence of sub-goal images [40]. These
methods hold promise for expanding the space of mobile
robots that can effectively localize and navigate, particularly
because they use relatively cheap sensors. However, they cur-
rently either require too much compute to run on-board some
mobile robots, require a significant amount of preparatory
work to train the models, and/or are not robust to in-the-wild
challenges such as moving people or lighting changes.

a) Wandering: The notion of a wandering robot has
existed in the robotics community since at least the 1980s
[41]. A well-known commercial instantiation of this concept
is the early versions of the Roomba, a robot vacuum cleaner
that covered a room by moving straight until it hit a wall,
turning away from the wall, and continuing [36]. In these
wandering robots, however, not needing human intervention
was a design requirement [41]. However, particularly with the
rise of notions of human help, or symbiotic autonomy [29],
in the HRI community, we believe that integrating wandering
behavior with periodic human help can increase the types of
mobile robots we can use for in-the-wild deployments, and
lengthen the duration of those deployments.

D. Human Help

Multiple works have suggested that robots use human help
to overcome failures and to handle unexpected circumstances,
a concept also known as symbiotic autonomy [29]. For ex-
ample, the CoBot project demonstrated that a robot could
effectively navigate a multi-floor office building over several
years by relying on co-located humans to provide help like op-
erating the elevator, moving furniture, and completing tasks the

robot could not (e.g., leaving notes on doors, retrieving food
from fridges) [29], [42]. Other projects have demonstrated
that robots with rudimentary navigation skills are able to
successfully navigate outdoor spaces by either actively asking
co-located humans for help [43] or by passively waiting for co-
located humans to help it [44]. Another work studied remote
(not co-located) human helpers, and found that helpers had
large individual variation in their responses to help requests
and got annoyed if the robot asked too much [45]. Our work
extends the concept of human help to wandering robots, and
shares open-source code3 for enabling a robot to ask for help
using commonly-used messaging applications.

III. WANDERING ROBOT SYSTEM

A. Robot: Kuri

We developed our system atop the Mayfield Kuri robot, a
small, differential-drive social robot. Designed as a consumer
product, Kuri is an expressive robot that can embody emotions
like happiness, sadness and tiredness through eye movements,
head movements, chest-light patterns, and beeps. However, as
a product aimed at a $700 retail pricepoint, Kuri also has
limited sensing and compute capabilities. It is equipped with
a custom-designed low-power lidar sensor with a horizontal
field-of-view of 100°, a max range of 7.5 feet for walls, and a
max range of 4.5 ft for human legs (Fig. 1). It can struggle to
perceive dark surfaces until they are inches away. Kuri also has
a monocular RGB camera, with a horizontal field-of-view of
87.5° and a vertical field-of-view of 47°. Its computer is a low-
power Intel single-board computer (Intel(R) Atom(TM) x5-
Z8350 CPU @ 1.44GHz). Conventional workloads like run-
ning a localization particle filter or a vision-based localization
technique can consume the majority of available compute.

Although no longer commercially available, at least 48 uni-
versity labs possess Kuris2. Because Kuri was designed to be a
relatively affordable consumer product that uses technologies
that are 5+ years old, its capabilities likely represent a lower
bound on those that we can expect in deployed mobile robots.
In other words, researchers will likely use mobile robots at
least as powerful as Kuri for deployments. Hence, we chose
Kuri as a platform for our wandering robot system.

B. System Requirements

Our goal was to develop a mobile robot system that could
• be deployed for several days, with only periodic human

intervention. Unlike the Wizard of Oz paradigm [3],
which typically involves a researcher teleoperating or
providing instructions to the robot at all times, we wanted
a human helper to be able to continue doing a full day
of work while only periodically helping the robot.

• effectively traverse the space it was deployed in. We
wanted the robot’s position over its deployment to be
distributed over the navigable spaces in the building, as
opposed to being concentrated in a few places.

2According to personal communication with a former Mayfield Robotics
employee



ExecutiveWandering Module

Local ControllerLocal Costmap

Chatbot

start/stop

On-Robot

Remote
Computer

Helper(s) Domain-Specific
Remote Users

Human Interaction 
Module 

Low Battery
Anomaly Detection

Domain-Specific
User Interaction

Stuck Detection

Selected
direction 

Selected
direction 

Time, distance 
thresholds

reselect

Hardware Control Loop

Recovery
Behaviors

Odometry

Base

Bump
Sensors

Lidar
Monitor LoopInformed Direction Selection

Previous
direction

Obstacle
cost Selection

Periodic
Monitoring 

Navigational
progress

velocities

Messages

Warnings

command
Information

Fig. 2. Our system consists of a “wandering module” and a “human interaction module.” The wandering module’s consists of: an informed direction selection
component that takes in the local costmap and the robot’s previous direction and selects the robot’s next direction; a local controller that takes in the selected
direction and converts it to velocity commands; and a monitor loop that detects if the robot is stuck and attempts recovery behaviors. The human interaction
module consists of a low battery anomaly detection loop that run on the robot and notifies the chatbot (running on a remote computer) when it detects a need
for human help. The chatbot then notifies the helper(s). Together, these components enabled Kuri to wander the halls of our academic building for four days.

• move at a reasonable speed. We did not want the robot to
move so slowly that it would hinder walking traffic, nor
so fast that it may be dangerous or scary to passersby.

C. Domain

The floor in the academic building that we targeted for
deployment is around 28,000 ft2, with 1,200+ ft of hallways
for the robot to navigate in. Hallways range from 6-10 ft
wide and in many instances continue for 130 ft with minimal
distinguishing geometry (see Fig. 4a). Several walls are made
of glass (Fig. 4b), a material that cannot be detected by most
lidar systems. Further, there is a black, chain-link bannister
around many walkways that is also difficult to detect using
lidar (Fig. 4b). The perimeter of the banister is marked on
the floor with a cliff, which can lead to robots getting stuck.
These notable challenges aside, the space typifies common
office interiors into which one might deploy a mobile robot.

D. Early Attempts

We attempted to implement multiple conventional naviga-
tion approaches before developing our wandering system.

1) Lidar-Based Localization: We attempted to use Kuri’s
default navigation stack, developed by Mayfield Robotics to
enable Kuri to navigate in home interiors. However, due to
the large hallways and difficult-to-perceive materials, our de-
ployment setting differed from domestic environments enough
that this solution was unusable. Kuri’s lidar could detect few
surfaces—and none in some locations—which prevented it
from building a map. We tried supplying a map created using
a powerful lidar (manually edited to remove materials Kuri
couldn’t perceive), but found that the sparse sensor readings
were also insufficient to perform Monte Carlo Localization
against this map. Localization estimates diverged within 30ft,
leading to unpredictable behavior. In practice, when using
these lidar-based localization approaches, the robot often drove
up to walls or difficult-to-see banisters, and sometimes collided
as it futilely attempted to “go around.”

2) Vision-Based Localization: We then sought out and eval-
uated vision-based localization techniques [46], [47]. Based
on Kuri’s monocular camera, and the need to close loops

as it moved through the hallways, we first considered ORB-
SLAM2 [2]. However, perhaps due to a combination of the
camera’s limited field-of-view, the robot’s weak on-board com-
puter, and our environment’s lack of distinguishing features in
certain hallways, we found that Kuri had to move extremely
slowly (< 0.1 m/s) to stay localized. We also found that pass-
ing humans could cause Kuri to get delocalized, and it would
sometimes relocalize far from its previous estimate (despite not
moving). This led us to techniques that perform fusion with
other sensors that can track the robot’s motion [48]. We first
tried VINS-MONO, a technique that merges IMU data with
a monocular camera to maintain a localization estimate [49].
However, this technique assumes a static link between the IMU
and camera, which isn’t the case due to Kuri’s pan/tilt head.
Further, because Kuri moves along the ground, its IMU is
not as informative of a sensor. This led us to a technique
that uses wheel encoders instead, and allows for a dynamic
link between the camera and wheel encoders [50]. However,
building the packages in the robot’s software distribution
would have required large modifications to the source for
library compatibility, which led us to pursue other approaches.

3) Adding Additional Sensors: Although we considered
adding additional sensors to Kuri, we rejected it for three
reasons. First, many candidate sensors would have strained
Kuri’s battery, which lasts for three hours under minimally
demanding workloads. Second, Kuri lacked space within its
chassis to mount additional sensors internally, and external
sensors would impact its expressivity. Third, we felt that
mounting sensors would make our system less reproducible.

4) Wandering Robot: Inspired by Brooks [41], we finally
settled on using a localization-free approach and developing
a wandering robot. Based on earlier approaches, we charac-
terized a wandering robot as a system that iteratively selects
a straight-line direction and follows it until an event triggers
direction reselection. We therefore characterized the space of
wandering systems in terms of two questions: what event
triggers direction reselection, and how a new direction is
selected. Brook’s [41] robot, for example, triggers direction
reselection after 10 secs have elapsed, and selects directions
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Fig. 3. How a robot with the same initial direction would move under different
wandering behaviors. Top: Our first attempt at wandering had the robot move
up to 3m in a direction and then pick a different direction, which prevented the
robot from traversing long halls. Bottom: Using informed direction selection,
the robot is able to successfully traverse long halls. In practice, it is also able
to stay further from obstacles than the first attempt, because the robot rotates
less and can therefore maintain a more accurate costmap.

uniformly at random. The Roomba, on the other hand, triggers
direction reselection when it collides with a wall, and selects
a direction by approximately reflecting off of the colliding
surface [36]. With TweenBot [44], direction reselection is
triggered when a human decides to rotate the robot, and what
direction is selected is also up to the human.

In our case, we did not want the robot to collide with
obstacles, due to the aforementioned potential of getting stuck
near bannisters in our environment. Therefore, we initially
tried triggering direction reselection after the robot had moved
3m, and selecting a direction by uniformly randomly sampling
in [0, 2π). However, we found that this technique resulted in
the robot moving back-and-forth across a few-meter distance
(Fig. 3 Top). Even after lowering the sampling range to be
maximally 90° from its current direction, after a few iterations
of resampling the robot would turn almost 180° from its
original heading. This repetitive motion lead the robot to get
stuck in hallways and prevented it from traversing the building.

E. System Implementation

Our final system3 (Fig. 2) consists of a wandering module
that is in charge of robot motion and a human interaction
module that is in charge of communicating with the user(s).

1) Wandering Module: The wandering module operates in
two layers: informed direction selection and local control.
The informed direction selection layer (Alg. 1) uses local
context in the form of a costmap, as well as the robot’s
previously selected direction, to pick the robot’s next direction.
The costmap, M , is defined in the base frame with the robot
at the center at a 0-rad angle. Both lidar and bump-sensor
readings are used to populate the costmap to account for the
fact that Kuri’s lidar alone may not pick up some obstacles.
Given a costmap, the layer selects evenly spaced directions
around its edge (generateDirections(η)). It then selects
the direction that would encounter the least costly obstacles

3https://github.com/hcrlab/kuri wandering robot

Algorithm 1 Informed Direction Selection
Input: Current local costmap M ,

number of directions to consider η,
previously selected direction θprev

Output: Next direction θnext
1: dirs← generateDirections(η)
2: costs← [(obsCost(θ,M) , |θ − θprev|) | θ ∈ dirs]
3: i← argmin(costs) {Using lexicographic ordering}
4: return dirs[i]

(obsCost(θ,M)), breaking ties by favoring the direction
closest to the previously selected one as assessed in the robot’s
odometry frame. This ensures that Kuri avoids obstacles—
lowering its chances of getting stuck—while navigating long
hallways by moving in a similar direction (Fig. 3 Bottom).
In practice, we found that a 3.5m2 costmap updating at 2Hz
(buffering the 10Hz lidar readings) paired with η=24 worked
well with the robot’s speed capped to .15m/s.

The selected direction is then passed to a local control layer,
which generates velocity commands for the robot to follow
that direction. Any local controller can be used; we use ROS’s
dwa_local_planner4. When the local controller can no
longer generate velocity commands (e.g., due to the complete
obstruction of that direction), the informed direction selection
layer is engaged to reselect a direction.

The robot monitors its progress in the odometry frame and
engages recovery behaviors if it detects that it hasn’t moved
a meter in thirty seconds. These behaviors are to: (a) clear
the costmap and rotate in-place for eight seconds; (b) move
backwards for ten seconds; and (c) alternately rotate left and
right for ten seconds. In contrast with the other components
of our system, these recovery behaviors were tailored to our
deployment environment. Although simple, they effectively
address failure modes we observed during testing, including
getting stuck on furniture or trapped with a tread off of a cliff.

2) Human Interaction Module: The human interaction
module enables Kuri to use a chatbot to contact humans, either
to help it or for domain-specific interaction purposes. Specifi-
cally, the robot requests help when it is low on battery, since
it cannot return to its charger autonomously due to its lack
of localization. As Kuri’s battery dips below set thresholds, it
sends a message to designated “low battery helper(s)” (in our
case, a researcher). This message tells recipients Kuri’s battery
level, optionally includes a picture of Kuri’s surroundings, and
asks them to put Kuri on its charger.

Although our system only uses low battery help messages,
chatbots in general can enable rich forms of communication
through buttons, open-ended text responses, emoji reactions,
and much more. To illustrate some of these interaction modal-
ities, our code includes a sample “where am I” help message
where the robot shows users a picture of its current camera
view, asks them to click a button corresponding to where it
is, and/or asks them to type in its location using open-ended

4http://wiki.ros.org/dwa local planner

https://github.com/hcrlab/kuri_wandering_robot


text. Although the system does not autonomously decide when
to request this type of help, and does not use it to localize,
this sample message illustrates the potential for rich remote
human-robot interactions via chatbots. We use Slack as the
platform for this chatbot.

A final component of our system includes researcher(s) peri-
odically monitoring Kuri’s camera feed to determine whether
it is moving. Researchers do this infrequently—once every
few hours—but it is important to catch the few situations
where Kuri is unable to get unstuck using recovery behaviors.
We did this by visualizing the robot’s camera stream in
RVIZ5, although in principle this could also be done using
a webstream or an extension to the interaction module where
the user requests the robot’s current view.

IV. FINDINGS FROM A MULTI-DAY DEPLOYMENT

To understand and illustrate the potential value of a wan-
dering robot system, we ran a multi-day deployment in
our large academic building (Sec. III-C). In addition to the
aforementioned system requirements (Sec. III-B), another goal
we had was for our system to be extensible to domain-
specific scenarios. Therefore, we needed a domain-specific
scenario for this deployment. This was around the time that
our department was trying to boost morale and create a
sense of shared community, spurred by Covid-19 work-from-
home restrictions. Conversations around this departmental goal
resulted in the idea of a robot photographer, designed to enable
users to feel a sense of connection for a place by sharing
images with them. In this section, we provide an overview of
extensions we made to the system to adapt it to this domain-
specific scenario, and an evaluation of the robot’s wandering
behavior. Additional details and findings from the deployment
can be found in Appendix A and in our video6.

A. Deployment Scenario: A Robot Photographer

In our deployment scenario, Kuri wandered the hallways
of our academic building and took pictures to share with
remote users. These users were distinct from the designated
helper who periodically helped the robot charge its battery,
although both interacted with the robot using the same Slack
workspace. Kuri’s goal was to take images of the building
that it thought the remote users would like, share them with
users, and get their feedback so it could improve its photo
sharing. This deployment was approved by our university’s
Institutional Review Board (IRB) and the building manager,
and participants were recruited from the population of people
who used this building and the associated Slack workspace.

B. Extensions of the System

For this deployment, we extended the wandering robot
system with a photo-taking module and additional chatbot
interactions.

5http://wiki.ros.org/rviz
6https://youtu.be/EsL9108-QYM

1) Photo-Taking Module: We extended the wandering mod-
ule (Sec. III-E1) by enabling the robot to stop wandering when
it wants to take a picture, and to execute precise orienting
motions to fine-tune its image view. Specifically, as the robot
wanders, it analyzes its image stream to detect objects and
determine which images users might like (more details on
the robot’s model for human preferences can be found in
Appendix A). When the robot detects images users might like,
it stops its wandering motion. It then segments the image
into a region of interest, using the approach in Vázquez
and Steinfeld [51], rotates its head to center the region of
interest, and then captures the picture. Note that although the
extension to wandering behavior in this deployment is limited
to starting and stopping wandering behavior for domain-
specific purposes, in principle it can also be used to integrate
wandering motions with other forms of motion (e.g., stop
wandering when you see a person and move towards them).

2) Chatbot Interaction Design: We extended the human
interaction module (Sec. III-E2) by enabling the robot to
to interact with more users beyond the designated helper(s).
Specifically, Kuri tells users it took an image for them,
shares the image, and asks them to click a checkmark or x-
mark button based on whether they like the image (Fig. 4c).
This user feedback is then sent back to the robot, to better
learn the user’s preferences. To further engage the user, Kuri
periodically asks an open-ended followup question, such as
why they liked the image. More details about the interaction
design can be found in Appendix A.

C. Wandering Findings

We deployed Kuri in our academic building for a period
of four days in Summer 2021. In total, the robot ran for 32
hours, where it traversed all of the 1,200+ ft of hallways of the
floor (Fig. 4a). The robot never ran out of battery. Its system
of notifying a helper (a member of the research team) when
it was low on battery enabled it to get charged in a timely
fashion the 12 times it needed to over the course of the study.
The robot’s recovery behaviors enabled it to get unstuck most
of the times it encountered environmental hazards; it needing
manual rescue 4 times over the 4 days due to getting stuck
on the cliff near the banisters (Sec. III-C). The helper noticed
that the robot was stuck by periodically checking the robot’s
camera feed and realizing that it was not moving.

Overall, the system required around half an hour of the
helper’s time over the course of its 32 hour deployment (16
total instances of help, where most of those 30 minutes went
towards the putting the robot on its charger). This is a tiny
fraction of the researcher time that would have been required
to teleoperate it under a WoZ design.

V. DISCUSSION

In this paper, we presented wandering robots as a way of
enabling multi-day, in-the-wild deployments of mobile robots
that might otherwise face challenges navigating autonomously.
We shared the design and code3 for the system, which relies
on informed direction selection and human help, and presented

https://youtu.be/EsL9108-QYM
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Fig. 4. (a) Kuri’s movement around the floor plan of the building. Each dot represents a location Kuri was in when it took a picture, as annotated by
researchers for a random 20% of the pictures it took. (b) Photos of Kuri as it wandered the environment. The environment contains materials that are
difficult to perceive with depth sensors, like glass, chrome-finish metal, and black chain-link banisters. Large windows also varied the lighting, which impacts
vision-based navigation approaches. (c) An example chatbot prompt from the deployment where the robot asked a user whether they like an image it took.

Autonomous WoZ Wandering

Computation Substantial Minimal Some
Connectivity Not required Required Not required

Setup Substantial Minimal Some
Supervision Minimal Substantial Some
Robustness Variable Substantial Variable

Goals Yes Yes No

TABLE I
SUMMARY OF THE TRADE-OFFS BETWEEN NAVIGATION APPROACHES FOR

MOBILE ROBOT DEPLOYMENTS.

outcomes from a four-day deployment in a large academic
building.

A. The Benefits of Wandering Robots

Wandering robots have several benefits. First, wandering
robots expand the space of robots that can be deployed in-
the-wild. Even robots with poor sensors and computational
capacity can wander. Despite only being able to perceive
obstacles up to 7.5 ft away, Kuri was able to successfully
traverse the large floor by wandering (Sec. IV).

Second, wandering mobile robots require less development
and setup time. Probabilistic localization approaches typically
require building a map of the environment, which takes time
and familiarity with the foibles of map-building SLAM ap-
proaches. Learning-based navigation systems, which maintain
implicit representations of the robot’s location, require the
collection of in-situ training data to be effective, and are
challenging to deploy on low-compute platforms. In contrast,
our open-source implementation3 enables quick deployment of
a robot like Kuri.

Third, wandering robots can be sufficiently autonomous
for long-term deployments. Low-autonomy approaches like
WoZ are generally valuable in HRI, although WoZ in-the-wild
deployments require one or more researchers to constantly

monitor or teleoperate the robot. In contrast, a wandering
robot frees researchers’ time: through careful system design,
teleoperation can be avoided and human help may only be
needed a few times throughout the deployment. This makes it
more feasible to deploy the robot for a longer period of time.

Finally, when compared to stationary in-the-wild robots,
wandering robots enable researchers to more deeply explore
a domain because the robot will naturally interact with more
people in varied contexts. Several in-the-wild studies have
deployed stationary robots in particular indoor settings—a
mall kiosk [21], in front of an elevator [20], at the entrance to
a building [52]—and studied users’ reactions to them. Yet, we
know that the way users interact with a robot depends heavily
on the context [1]. Thus, being able to easily vary the context
(locations, times, direction of motion, etc.) of interaction by
wandering could deepen our perspectives on how users interact
with a mobile robot in the building.

Table I presents some of the tradeoffs between autonomous,
Wizard of Oz, and wandering navigation approaches for mo-
bile robot deployments. Each approach has its strengths and
shortcomings. Our goal is to add wandering to the space of
navigational approaches considered by HRI researchers when
running in-the-wild mobile robot deployments.

B. User Studies Where Wandering Robots Can Be Used

The notion of a wandering robot may seem counter to
the goals of mobile robotics—a field that has focused on
domains like item pickup and delivery [29], [53], [54], guiding
users [55]–[59], and taking inventory [60]–[62]. However, we
contend that numerous in-the-wild human-robot interaction
user studies can be run with a wandering robot. These include:

• studies that investigate human reactions to an in-the-
wild mobile robot. For example, these can be exploratory
studies or studies that investigate the impact of robot
design on humans’ in-the-wild reactions.



• studies that investigate a robot’s interactions with by-
standers. For example, these can involve investigating
communication modes (e.g., natural language, expressive
beeps, screens, etc.) or how to engage bystanders.

• studies that investigate aspects of remote human-robot
interaction. For example, these can investigate how robots
share information with remote operators, how they can
elicit feedback from remote humans, or how they can
engage users through disembodied communication.

Wandering robots also expand the types of robots that
can be used for such studies to include robots with low
sensor or computational capabilities. This lowers the cost and
development barriers for deploying a system, enabling more
researchers to run in-the-wild mobile robot studies.

C. Generalizing to Other Robots

One reason we developed this system on Kuri is because
there are 72 Kuris at 48 different universities2, so this system
can be used off-the-shelf by dozens of labs to run in-the-
wild deployments. However, because the HRI community uses
a variety of robots, in this section we share pointers on
developing a wandering system for other mobile robots.

A crucial part of our wandering module is the costmap.
Maintaining the costmap requires range sensors that can
estimate the distance to nearby obstacles, and odometry ac-
curate enough that observations cohere as the robot moves.
Importantly, neither capability need be excellent; Kuri’s lidar
is limited compared to today’s alternatives, and the robot is
not capable of dead reckoning for more than a meter before
there is noticeable error.

Some auxiliary sensors are useful, but are not be required to
implement wandering. Bump sensors were valuable for Kuri,
whose low-range lidar gave the robot a proclivity for close
encounters with hard-to-see surfaces. Most robots which use
modern, commercially available depth sensors or even low-
cost sonar arrays should have sufficient range to not need a
bump sensor. We found that cliff sensors were unnecessary in
our environment as fatal ledges, like stairwells, were behind
doors. While not universal, this is true of many office buildings
due to fire protection measures for egress routes.

Like extra sensors, recovery behaviors suited to the deploy-
ment environment aren’t necessary but increase the amount
of time the robot can be expected to go without requiring
assistance. While piloting our deployment, we quickly dis-
covered environmental hazards that would predictably ensnare
the robot. Our procedure was to then attempt to recover with

manual teleoperation, and if that was successful, to implement
a matching scripted motion as a recovery behavior.

The chatbot, by virtue of running on a remote machine and
exposing a general-purpose HTTP interface, can work as-is for
other robots. It can be readily extended to account for other
types of help and forms of user interaction, as demonstrated by
the sample “where am I” help message provided by our code.
Our code is particular to Slack, but other major messaging
platforms (e.g., Microsoft Teams, Discord, Matrix, Telegram,
etc.) provide their own bot APIs, so our system can be adapted
to whatever platform is used in a particular deployment.

D. Limitations and Future Work

There are multiple interesting directions for extending our
system’s capabilities. Although our system only leverages
human help when low on battery, it would be valuable to
elicit human help in additional situations, such as when the
robot is stuck. This could also enable investigations into how
humans’ willingness to help a robot is impacted by the type of
help requested. Further, our system is unable to perform goal-
directed motion, which can be required for some deployments
or user studies. An interesting way to engineer goal-directed
motion into this system would be to extend the human-
interaction module to enable helpers to localize the robot.

Furthermore, we would be interested in extending the eval-
uation of our system. In this work, we tested our system on a
Kuri. Several dozen labs also have a Kuri and could directly
use our code. However, to further demonstrate the value of
wandering robots in facilitating in-the-wild deployments, it
would be valuable to test our system on additional platforms.
This could involve collaborating directly with labs that use
the system to understand their use case, gain insights into
the challenges of extending the system to other robots and
environments, and modify the system to make it easier to
generalize. Finally, due to Covid-19 restrictions, our study
did not involve in-person interactions (beyond the designated
“helper”). We would be excited to run a long-term deployment
study with a wandering robot while people are in the building.
This would allow us to extract insights about co-located
humans’ reactions to an expressive in-the-wild mobile robot.

ACKNOWLEDGMENT

We thank Honda Research Institute for their generous
support, Nikita Filippov for his contributions to the chatbot,
the former employees of Mayfield Robotics for their help with
this project, the deployment participants for their insights, and
the anonymous reviewers for their helpful feedback.



REFERENCES

[1] M. Jung and P. Hinds, “Robots in the wild: A time for more robust
theories of human-robot interaction,” J. Hum.-Robot Interact., vol. 7,
no. 1, may 2018.

[2] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras,” IEEE Trans. Robot., vol. 33,
no. 5, pp. 1255–1262, 2017.

[3] L. D. Riek, “Wizard of oz studies in hri: a systematic review and new
reporting guidelines,” Journal of Human-Robot Interaction, vol. 1, no. 1,
pp. 119–136, 2012.

[4] C. L. Breazeal, Designing Sociable Robots. MIT press, 2002.
[5] H. Kozima, M. P. Michalowski, and C. Nakagawa, “Keepon,” Interna-

tional Journal of Social Robotics, vol. 1, no. 1, pp. 3–18, 2009.
[6] I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B. Wrede, S. Wachsmuth,

and G. Sagerer, “The bielefeld anthropomorphic robot head “flobi”,”
in 2010 IEEE International Conference on Robotics and Automation.
IEEE, 2010, pp. 3384–3391.

[7] S. Nishio, H. Ishiguro, and N. Hagita, “Geminoid: Teleoperated android
of an existing person,” Humanoid Robots: New Developments, vol. 14,
pp. 343–352, may 2007.

[8] C. Breazeal, C. D. Kidd, A. L. Thomaz, G. Hoffman, and M. Berlin,
“Effects of nonverbal communication on efficiency and robustness in
human-robot teamwork,” in 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2005, pp. 708–713.

[9] C. F. DiSalvo, F. Gemperle, J. Forlizzi, and S. Kiesler, “All robots are
not created equal: the design and perception of humanoid robot heads,”
in Proceedings of the 4th conference on Designing interactive systems:
processes, practices, methods, and techniques, 2002, pp. 321–326.

[10] F. Hegel, F. Eyssel, and B. Wrede, “The social robot ‘flobi’: Key
concepts of industrial design,” in 19th International Symposium in Robot
and Human Interactive Communication. IEEE, 2010, pp. 107–112.

[11] G. Hoffman and W. Ju, “Designing robots with movement in mind,”
Journal of Human-Robot Interaction, vol. 3, no. 1, pp. 91–122, 2014.

[12] D. Glas, S. Satake, T. Kanda, and N. Hagita, “An interaction design
framework for social robots,” in Robotics: Science and Systems, vol. 7,
2012, p. 89.

[13] J. K. Lee and C. Breazeal, “Human social response toward humanoid
robot’s head and facial features,” in CHI ’10 Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 4237–4242.

[14] R. Groot, “Autonomous exploration and navigation with the pepper
robot,” Master’s thesis, Utrecht University, 2018.

[15] A. Fallatah, B. Chun, S. Balali, and H. Knight, “Semi-ethnographic
study on human responses to a help-seeker robot,” in Companion of the
2020 ACM/IEEE International Conference on Human-Robot Interaction,
2020, pp. 640–640.

[16] W.-Y. Lee, Y. T.-Y. Hou, C. Zaga, and M. Jung, “Design for serendip-
itous interaction: Bubblebot-bringing people together with bubbles,”
in 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2019, pp. 759–760.
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APPENDIX A
ROBOT PHOTOGRAPHER DEPLOYMENT DETAILS

As was mentioned above, the primary goal of this de-
ployment was to test the robot’s wandering system and to
provide a case-study in extending that system for domain-
specific scenarios. However, the interactions that ensued be-
tween the robot and users in our domain-specific scenario,
a robot photographer, revealed initial insights that might be
interesting to others in the HRI community. Hence, in this
appendix we describe more details and initial insights from
the deployment, particularly focused on the specific robot
photographer scenario.

A. Recruitment

Participants were recruited through email and Slack mes-
sages posted in communication channels that were likely to
reach people affiliated with our department. To be eligible,
participants had to either have an office in or have attended
meetings/classes in the academic building the Kuri was de-
ployed in.

B. Modeling Users’ Photo Preferences

The robot modeled human photo preferences by estimating
the humans’ preferences over objects they like to see in pic-
tures. Specifically, the robot converted each image to a vector
I , where Ii is the probability that object i is in the image (as
outputted by Amazon Rekognition). The robot then assumes
that user k has a corresponding preference vector θk, where
θk,i indicates how much user k likes seeing object i in an
image. The robot further assumes that the probability that user
k reacts to the image with a checkmark is (1+ e(−θk · I))−1.
The robot begins with a Gaussian prior over every θk, seeded
by pilot studies with building users, and updates its belief over
a particular user’s θk using Laplace Approximation every time
it gets a response from them. This focus on objects is because
of the aforementioned goal of using the robot photographer
to strengthen people’s feelings of connection to the building;
therefore, the robot sought to understand which objects or
views in the building users most liked.

We integrate this model of photo preferences into a larger 2-
Arm Logistic Contextual Bandits formulation, where for each
image it sees Kuri must decide whether or not to capture
it for a particular user (i.e., the robot is solving a separate
Contextual Bandits problem per user, where the arms are to
“capture” or “not capture” the image). Kuri uses Laplace-TS,
a Thompson Sampling based approach, to solve this problem.
See Dumitrascu et al. [63] and Russo et al. [64] for details on
Logistic Contextual Bandits and Laplace-TS.

C. Interaction Design

When sharing images with users, Kuri wrote that it took an
image for them, and asked them to react based on whether
or not they liked at least one object in the image. To further
draw users’ attention to the objects in the image, the message
also listed a few objects that Kuri detected in the image. See
Fig. 4c for a sample interaction message.

This interaction was developed over several pilot tests. One
insight from the pilots was that care must be taken when
selecting the emojis users use to respond to robot messages,
due to multiple and possibly conflicting prior connotations of
emojis (for example, does “thumbs up” mean the person liked
the image, or that they are acknowledging having seen the
image?). Another insight was that periodic followup questions
could help engage users and make the task feel less like a
CAPTCHA-style labeling task. Hence, the robot sometimes
asked open-ended followup questions, like “Can you explain
more about why you (dis)liked this photo? Any objects that
you (dis)liked?” These followup questions also helped us gain
initial insights into the willingness for everyday users, who
are not designated helpers, to help the robot improve.

D. Deployment Procedure

Although the deployment lasted 4 days (32 hours), users
interacted with the robot in two 3-day batches. This was to
avoid user fatigue and accommodate user’s schedules, while
enabling the robot to reach a mature level of performance
in terms of learning each users’ preferences. Each day, the
robot engaged with the user 4 times (at 2 hour intervals),
each time sending a batch of the 5 captured images that it
felt the user would most like. Participants could respond to
the pictures at anytime, by clicking either the checkmark or
x-mark buttons. Users were told that they were participating
in the “Seeing the World Through the Eyes of the Robot”
project, where the robot’s goal was to learn the types of
objects in the building that they likes and share pictures of
those objects from the robot’s perspective. At the end of each
day, user’s completed a survey that asked both quantitative
questions (e.g., indicate (dis)agreement with statements like
“I would interact with Kuri again in the future” or “Kuri
learnt what types of objects I like to see in images”) and
qualitative questions (e.g., “Did interacting with Kuri help
you feel a sense of connection with the building Kuri was
photographing?,” “In your interactions with Kuri, did you feel
like you were interacting with something closer to a robot
or a chatbot?,” etc.). Participants read and signed an informed
consent form before participating, and were compensated with
a $25 Amazon gift card after participating.

E. Initial Insights

During the deployment, the robot interacted with n=31
remote users (10 female, 14 male, 1 prefer not to state, and
6 who didn’t respond to that question). It sent them a total
of 1,860 images (219 unique ones), out of which users liked
1,002 (53.9%), disliked 736 (39.6%), and did not respond to
122 (6.6%). All participants were sent all surveys and survey
questions, but some chose not to respond. For the below
analysis, we removed users who did not complete all surveys,
for a total of n=22 users.

User perception of the system was overall positive: 84%
of users said they “would interact with Kuri more,” and (a
different) 84% agreed with the statement “as I interacted
with Kuri more, it shared images I liked more.” Below,
we delve more into selected insights from users’ qualitative



perceptions of the data. All qualitative responses were coded
by a researcher, and responses where users did not answer the
question were ignored.

1) Connection to the Building: Users were asked two open-
ended questions about their connection to the building: “Did
interacting with Kuri help you feel a sense of nostalgia
for working in the building Kuri was photographing? Please
explain why/why not” and “Did interacting with Kuri help
you feel less like you were working from home? Please
explain why/why not” We coded these responses as “positive,”
“mixed”, and “negative.” In response to the nostalgia question,
66% of users responded positively. For example, one user
wrote “Yes, it reminded me of the labs where my friends
worked from, places I used to walk around when in the
building and a sense of nostalgia taking me back to the time I
spent there.” 28% responded negatively, with one user writing
“No; at some point the pictures felt repetitive and the images
were not of areas that held particular significance to me.”
However, the results were flipped on the working from home
question, with 5% saying Kuri helped them feel like they
were working from home less and 77% indicating that it did
not. The negative responses often discussed how Slack was
not sufficient to help them overcome the feeling of working
from home, with one user saying ”No, it [Kuri] was pretty
disconnected from my reality”. This indicates that remote
robots can help users feel connected to spaces that they no
longer work in, although that is not enough to overcome the
feeling of working from home, which would be an exciting
space to explore in future work.

2) Chatbot vs Robot: To gain more insight into remote
human-robot interaction, we also asked users if they felt Kuri
was more like a robot or chatbot. The results were mixed: 10
users felt that Kuri was more like a robot, 9 like a chatbot,
and 2 mentioned aspects of both. Two themes arose in users’
responses—the presence of a physical body and the interaction
style. In terms of physical body, one participant mentioned
that Kuri had a physical body, which made it more like a

robot. However, another participant mentioned that they had
never experienced Kuri’s physical body, which made it more
like a chatbot. In terms of interaction style, one participant
wrote “It felt like interacting with a robot. The interaction
was sparse and it did not feel spontaneous and real-time like
a conversation with a chatbot.” However, another participant
wrote “[Kuri was more like a] Chatbot, it had that strangely
polite form of speech and all interactions were done over text.”
This indicates that whether users focus more on the embodied
or remote parts of the interaction depends heavily on their
prior associations of chatbots and robots. User perceptions
of systems that have embodied and remote components is an
exciting area for future work.

3) Emerging Patterns in User Responses to Followup Ques-
tions: Although the robot’s learning system did not use users’
responses to followup questions, users’ did not know that. De-
spite that, we noticed that some users volunteered information
that would help the robot better learn their object preferences.
For example, in response to the open-ended question of what
objects they (dis)liked, one user wrote “I like the stairs and the
geometric aspect,” while another wrote “I do not care about the
flooring and the corridor is pretty ugly.” Further, multiple users
began writing their response in the same comma-separated
format that the robot used to describe objects in the picture.
For example, one user wrote that they liked the “Skylight,
architecture, window.” This indicates that users might be
searching for ways to make their open-ended responses more
useful to the robot, and given our interaction design they
settled on a comma-separated format. This tendency to search
for ways to help the robot was elaborated on by one user in
the survey, who wrote “I appreciated being able to give more
detail about what I liked/disliked in the images but I wasn’t
certain how to phrase my feedback in a way that would be
useful.” This indicates that open-ended responses might hold
promise for enabling robots to get help and improve learning,
although future work is required to systematically study the
implications of and learning potential for open-ended followup
questions.
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