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ABSTRACT

We aim to build robots that perceive the world on a higher
abstraction level than their raw sensors, and can communi-
cate this perception to humans via natural language. The
focus of this work is to enable a robot to ground antonym
adjective pairs in its own sensors. We present a system
where a robot is interactively trained by a user, ground-
ing the robot’s multimodal continuous sensor data in natu-
ral language symbols. This interactive training plays on the
strengths of the asymmetry in human-robot interaction: not
only is the training intuitive for users who understand the
natural language symbols and can demonstrate the concepts
to the robot, but the robot can use quick data sampling and
state of the art feature extraction to accelerate the learn-
ing. Such training allows the robot to reason not only about
the learned concepts, but the spaces in-between them. We
show a sample interaction dialog in which a user interac-
tively grounds antonym adjective pairs with the robot, and
data showing the state of the trained model.

1. INTRODUCTION

Robots are not human. The humanoid appearance of some
robots may encourage humans to consider them as human-
like or to have human-like intelligence, but in reality, robots
controlled by even state of the art systems must interact
with humans differently than how humans interact amongst
themselves.

Such interactions are asymmetric in many ways. Two of
these ways are language and perception. Regarding lan-
guage, humans interact in rich natural language that is often
full of ambiguity and backed by assumptions about knowl-
edge of the world, including the assumption that such knowl-
edge is at least partially shared. Robots do not inherently
have any natural language capabilities; by default, humans
communicate with them through ambiguity-free program
calls, often at low levels of abstraction. Regarding percep-
tion, humans have five external world senses in addition to
a multitude of self-monitoring senses (such as hunger, tem-
perature, pain, and time). Robots may have any number
of sensors: cameras, pressure sensors, sonar, and more can
give them lighting-fast information about their environment.

Figure 1: The NAO robot in two different configura-
tions: “dark” (contrasted with “bright”) and “heavy”
(contrasted with “light”).

However, in a way they represent different ways in which the
robot can acquire numbers, rather than truly distinct senses.
Thus, as in language, robots’ senses operate at a lower level
of abstraction than humans.

Combining perception and language is natural to humans,
but not to robots. Our work focuses on this divide. We aim
to utilize the strengths of the asymmetry in human-robot
interaction by combining a human’s knowledge of language
and the link between language and perception with a robot’s
multitude of sensors that provide fast access to numerical
data. We do this by interactively teaching a robot about
antonym adjectives, grounding them multimodally in the
robot’s own sensors. This raises the abstraction level with
which a robot understands the link between language and
perception. Doing so allows a robot more natural interac-
tions with humans: a robot can describe its own sensors with
human language. Conducting this learning interactively and
online allows for a tighter feedback loop.

2. RELATED WORK

The problem we are addressing is an instance of the symbol
grounding problem (SGP), first defined by Harnad in [5].
There has been a wealth of work in this area since—see the
review by Coradeschi et al. in [3] for a summary of the



work since 2000—even in the specific domain of multimodal
symbol grounding. Needham et al. in [7] used multimodal
input to autonomously learn the rules of simple tabletop
games. Grollman et al. in [4] cluster multimodal sensor
input in the robot’s perception space, though they don’t
link the clusters to symbols that are semantically relevant
to humans (such as language).

The work of Yu et al. in [9] is more closely related to ours
and involves categorization and grounding with multimodal
input, but the categorizations are unimodal nouns, and the
learning is autonomous and offline rather than interactive.
Chao et al. in [2] explore interactive grounding, as well
as grounding at a higher abstraction level (tasks), though
the inputs and grounding are unimodal. The closest work
to ours is by Nakamura et al. in [6], where they use LDA
to link multimodal input to multimodal noun and adjective
grounding with visual, audio, and haptic dimensions. Our
work is different in two ways. First, our learning is inter-
active and online. Second, our approach gives a robot the
ability to ground the relation between adjectives as well as
the adjectives themselves. Put another way, we ground the
lowest abstraction level of adjective grounding, their symbol
to sensor mapping, as well as one level of abstraction higher,
a limited symbol to symbol relationship. This is the strength
of emphasizing the asymmetry in human-robot interactions.

3. APPROACH
3.1 Inputs and Outputs

We now present an informal specification of our problem.
We take as preliminary inputs pairs of natural language ad-
jective antonyms, as well as optionally some configuration
of thresholds and templates for natural language generation
(NLG). Then, interactively, inputs are discrete training in-
stances that consist of a feature vector generated from the
robot’s multimodal sensor space, and a single adjective from
the input set. Whenever desired, the state of the grounding
can be tested, and output is a report the current observa-
tions of the robot, with one phrase per antonym pair. The
phrase generated can be as simple as the best adjective, or
can be set to fit a language template if it is within a cer-
tain threshold (for example, if the robot is unsure, it could
output “neither X nor Y”).

More formally, we provide to the robot a set of n antonym
adjective pairs A = {p1,...,pn}, where pair p; = (a1, a2)?,
and no adjective af, is ever used twice. We also provide a set
of m thresholds © = {01, ...,0,,}, 0 < 6; < 1, and matching
NLG templates T' = {t1,...,tm}. The thresholds are used
during output and will be described shortly.

We assume the robot has a set of w sensors S = {317 ey sw}
of various modalities, and that each sensor s, can be sam-
pled to obtain a raw input vector X* of length z*, such that
X* = [f,...,2%]. To acquire the final set of values f, =
[d)li, ey qbf;] from each sensor s, each sensor may be trans-
formed through a feature extraction function f, (m‘f, ey xﬁ ¢ )
The sensor may be used raw, in which case f; = X*, or f,
might define a more complicated transformation. The final
input vector from S is denoted F = [fi,...,f,]. A single
training datum would consist of the pair (aj,F), or an ad-
jective from the user and a complete input feature vector

Figure 2: The graphical model used to represent
the antonym adjective pairs’ groundings in the mul-
timodal sensors’ feature space.

transformed from the robot’s sensors.

For output, the robot will sample its sensors and observe F,
and from this will produce n phrases, one for each antonym
pair. Phrase i is generated from the robot’s belief over p;
and natural language is constructed with the use of © and T'.
Let us denote the robot’s belief over p; given F as b(a}|F),
where k € {1,2} as adjectives are in pairs. (We will write
b(al) when it is clear that F is constant.) Each belief is the
probability that the robot has observed af. As these are
probabilities, naturally 0 < blag) < 1 and Y ;_, b(a}) =
1 Vi € 1,...,n. Denote a’ the adjective in antonym pair i
with the highest b(a%), and a’ the other. The smallest 6;
such that a’, —a’ < 0; determines which language template

t; will be used. A template t;(a},a’) produces a phrase

« i iy

such as “a’}” or “Neither a’ nor a’.

3.2 Representation

The process of grounding the antonym adjectives in F is
the process of learning b(:|F'). We model each antonym pair
separately by a Gaussian naive Bayes, where the pair p;
generates all features F. As such, we model all features as
conditionally independent given the observed adjective (here
y = a}, for notational simplicity), and assume the likelihood
of all features are Gaussian:

P(¢fly) =

1 (Qbf - .“y)2
= exp| Y
\/2mo? 2mo2

A graphical model of this representation can be seen in Fig-
ure 2.



4. IMPLEMENTATION

For our system, we attempt to ground n = 6 antonym ad-
jective pairs. The pairs are:

1. “heavy” vs “light”
“near” vs “far”
“bright” vs “dark”
“crowded” vs “lonely”

“uncovered” vs “touching”
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“fast” vs “slow”

For natural language templates, we provide the system with
m = 3 thresholds © and templates T. Recall that a template
t; is used for an adjective pair p; if 6; is the smallest in ©
such that ay — a’ < 6;. These are as follows:

1. 61 = 0.1, t; = “Neither a’, nor a”

2. 62 =0.3, t2

“More aY) than a'”

3. 05 = 1.0, t2 = “a’,”

We use an Aldebaran NAO robot for the physical instan-
tiation of our system. We use a total of 15 sensors for the
interactive grounding, where w = 14 were “grounded” in that
they were used as inputs to the feature extraction for learn-
ing'. The sensors include 1 microphone, 1 camera, 8 foot
weight sensors, 3 haptic head sensors, and 2 sonar distance
sensors. These sensors represent inputs from five modalities:
audio, vision, weight, touch, and distance. We transform
them into a final feature vector F of length 12 by extracting
features from some sensors and compressing others.

From the camera, we extract four features from the most re-
cent recorded frame: the brightness measurement, the num-
ber of faces detected, and the average and total movement
velocities. We compress the eight foot weight sensors into
three values: the of the weight on the left foot, the right
foot, and combined. The two sonar sensors, located on the
chest of the NAO, provide left and right sonar distances,
and are used raw without transformation. Finally, the three
head haptic sensors each provide binary input as to whether
their region—the front, middle, and rear of the head—are
being touched. We concatenate these features together to
make our training feature vector F'.

To represent the Gaussian naive Bayes we use the Scikit-
learn machine learning package for Python [8]. As each
antonym adjective pair is represented by a separate naive
Bayes, we binarize the adjective observed in each training
datum.

5. DEMONSTRATION OF SYSTEM

In this section we present an example dialog between the
NAO robot running our system with a human user, as well
as data from the trained Gaussian naive Bayes models for
different antonym adjective pairs.

!The final sensor is the NAO’s microphone array, which is
used for speech recognition from the user.

5.1 Dialog

The dialog presented grounds only a subset of the available
adjectives pairs in the interest of space. Specifically, “heavy”
versus “light,” and “bright” versus “dark” are grounded. Be-
cause each adjective pair is modeled independently, ground-
ing further adjectives takes only additional training exam-
ples and does not interfere with grounding other pairs. Note
that because of the presence of speech recognition errors, the
NAO repeats each word it successfully recognizes as a con-
firmation.

NAO:Please demonstrate and then say adjectives. Say
‘predict’ to move to the prediction phase, or ‘done’
to finish.

(The user places a piece of paper on the robot’s arms.)

User: Light.
NAO: Light.

(The user replaces the paper with a cardboard box filled
with packing peanuts.)

User: Heavy. (Speech recognition error—the NAO beeps
but does not repeat the word.)

User: Heavy.

NAO: Heavy.

(The user removes the box.)

User: Light. (User error—they intended to say “bright.”)
NAO: Light.

User: Bright.

NAO: Bright.

(The user turns off the lights in the room.)

User: Dark.
NAO: Dark.

(The user turns the room lights back on.)

User: Predict.

NAO: OK. Please configure me as desired and say ‘pre-
dict’ again.

User: Predict.

NAO: Light. Bright.

(The user turns the room lights off and places the piece of
paper on the NAO.)

User: Predict.
NAO: Light. Dark.

(The user replaces the paper with the box.)

User: Predict.
NAO: Heavy. Dark.
User: Done.

NAO: Goodbye.

5.2 Learned Models

Rather than learning weights like other models in machine
learning, training a naive Bayes classifier involves learning
averages and variances (u, o?) for each class®.

Figure 3 shows the learned model for two adjective pairs. In
the left graph, we see that the brightness feature (fs) has
the largest difference in average value between “bright” and

2We assume a uniform prior over classes, though this is
based on the training examples given by the user.
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Figure 3: The differences in learned class (adjective)
averages for two pairs: “bright” vs “dark” (left) and
“heavy” vs “light” (right). For each pair (a,b), we
have plotted the difference in the learned averages
[la — fip for each feature f;, so each bar represents one
ki — pi’i. The error bars are the average variances

2 =2
. Go+6
for each pair, so —25—*.

“dark,” so this feature will correctly play the most promi-
nent role when determining which adjective to predict. In
the right graph, for “heavy” versus “light,” the first three
sensors f1 through fs—which are the robot’s combined to-
tal, left, and right foot sensors, respectively—correctly have
a high observed difference between the two class averages.
We notice that the noisy left and right sonar readings—fy
and fs—also report high differences between the class aver-
ages. However, their variances (plotted as error bars) are
also quite high, so such changes will not affect correct pre-
dictions.

6. CONCLUSIONS

We present a robotic system that can ground antonym adjec-
tive pairs from continuous multimodal sensor data through
interactive training with humans. Both parties benefit be-
cause the structure of our system emphasizes the asymme-
tries in such a human-robot interaction: the robot is granted
key pieces of human knowledge—which words are antonyms
and which configurations represent these adjectives—and
the human can easily train a robot to describe its sensor
state in natural language.

One challenge of the proposed approach is that as correla-
tions are inherently learned, the robot may learn correla-
tions from the particular training environment which do not
correspond to the desired grounding. For example, one sit-
uation we encountered was that in order to teach the robot
“touching” versus “uncovered,” the user would approach the
robot and put her hand on the haptic sensors located on its
head. In doing so, the robot learned a correlation between
“touching” and not only the positive readings of the hap-
tic sensors, but the lower reading of the two sonar sensors,
given that the user was closer to the robot when they demon-
strated “touching.” Discovering the relevant dimensions for

the robot could be addressed by employing techniques from
active learning, such as having the robot ask pointed ques-
tions (see Cakmak et al. in [1]).

An additional inherent challenge to learning adjectives is
that certain adjectives have multiple meanings and so could
fit in multiple antonyms groups. For example, in our own
work, we encountered the fact that “light” can refer to a lack
of weight, but also to the absence of darkness—a meaning
for which we use the word “bright.” This works in theory,
but users without prior knowledge of the system do not know
to follow such a distinction.

The structure of the system is such that in future work, sim-
ply increasing k from 2 to a higher number would allow the
system to reason about groups of related adjectives rather
than simply pairs. These words could be added interactively.
We would like to explore this domain, as well as more ad-
vanced techniques that could help the user with training a
larger vocabulary. For example, performing linear interpola-
tion of relevant sensor differences between known adjectives
could help the system predict to which class of adjectives
a new word would belong. Furthermore, natural language
processing techniques could be applied for additional signals
as to how to best group adjectives.
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