
Design and Evaluation of a Rapid Programming
System for Service Robots

Justin Huang
Computer Science & Engineering

University of Washington, Seattle, WA
Email: jstn@cs.washington.edu

Tessa Lau
Savioke, Inc.

Santa Clara, CA
Email: tlau@savioke.com

Maya Cakmak
Computer Science & Engineering

University of Washington, Seattle, WA
Email: mcakmak@cs.washington.edu

Abstract—This paper introduces CustomPrograms, a rapid
programming system for mobile service robots. With Custom-
Programs, roboticists can quickly create new behaviors and try
unexplored use cases for commercialization. In our system, the
robot has a set of primitive capabilities, such as navigating to a
location or interacting with users on a touch screen. Users can
then compose these primitives with general-purpose program-
ming language constructs like variables, loops, conditionals, and
functions. The programming language is wrapped in a graphical
interface. This allows inexperienced or novice programmers to
benefit from the system as well.

We describe the design and implementation of CustomPro-
grams on a Savioke Relay robot in detail. Based on interviews
conducted with Savioke roboticists, designers, and business
people, we learned of several potential new use cases for the
robot. We characterize our system’s ability to fulfill these use
cases. Additionally, we conducted a user study of the interface
with Savioke employees and outside programmers. We found
that experienced programmers could learn to use the interface
and create 3 real-world programs during the 90 minute study.
Inexperienced programmers were less likely to create complex
programs correctly. We provide an analysis of the errors made
during the study, and highlight the most common pieces of
feedback we received. Two case studies show how the system
was used internally at Savioke and at a major trade show.

I. INTRODUCTION

CustomPrograms is a programming system for mobile ser-
vice robots, designed to enable roboticists and end-users alike
to rapidly prototype and customize applications for the robot.
Using our system, a programmer can make the robot perform
a wide range of applications. Our goals for the system were
1) to be expressive enough for users to make new behaviors
they wanted, and 2) to be easy to use for inexperienced
programmers. We designed and implemented a simple API
for the robot’s capabilities, which we refer to as primitives. To
make programming easier for inexperienced users, we provide
a graphical interface for making programs, shown in Figure 1.
However, users have access to standard programming language
features, giving them control over the logic and flow of their
programs. This interface is web-based and hosted on a cloud
web server, allowing users to create, edit, and run programs
without special software.

Our system can be thought of as a compromise between
simple interfaces designed for end-users, and programming
in a fully expressive, general-purpose programming language.
Our design was motivated by the fact that for commercial

1 2 3

1

2

3

Fig. 1: A sample execution of CustomPrograms. Steps 1 and
2 affect the robot’s touch screen, as shown. The Relay robot
is shown driving in step 3.

service robots, there are many types of users, with a wide range
of technical ability. On one end of the spectrum, there are staff
members who might not have any programming experience,
but who want an easy way to customize how the robot interacts
with their guests. On the other end of the spectrum, there are
experienced robot programmers. Our system allows roboticists
to quickly prototype new applications for commercial use,
without needing to write, build, or deploy code. In the middle,
there are users with some programming experience, such as
designers, sales people, and hotel technicians. We designed
our system with this diverse range of users in mind.

Having a tool like CustomPrograms will be important as
more service robots are developed and deployed. This paper
contributes the design and evaluation of the CustomPrograms
system and our choice of primitives, as well as our experiences
deploying it on the Savioke Relay, a service robot. We present
results from interviewing Savioke employees about new use
cases for their robot, both internally and for their customers.
We also conducted a user study with people new to the
interface. In our evaluation, we report results on the system’s
ease of use and expressiveness. Finally, we present two case
studies on how CustomPrograms was used in practice.

II. RELATED WORK

A. End-user programming

Researchers are actively studying end-user programming
(EUP) [1], [2], with the goal of enabling ordinary people
with no software development experience to write programs.
Although our system is not primarily for end-users, many of
the methods and design guidelines [3], [4], [5] for EUP could
apply to creating a rapid programming system.

One such method is to represent the flow of the program or
of the input data as a flowchart diagram [6]. Some commer-
cially used examples of this include LabView and Simulink for
engineering analysis, RapidMiner for data analysis, and Sales-
force Process Builder for corporate processes. Flowchart-like
languages have also been applied to programming robots [7],
[8]. However, we chose not to use similar flowchart metaphors
because we wanted the full expressivity of a general-purpose
language. For example, it would be difficult to store high-
dimensional state in a typical flowchart, which grows expo-
nentially with the size of the state space.

Other forms of end-user programming include programming
by demonstration, in which the program is inferred from
examples [9], [10]; trigger-action programming, which trades
off expressivity for high ease of use [11], [12]; and domain-
specific languages, which are specifically designed languages
for a limited set of tasks [13], [14].

B. Visual programming

Our system is most closely related to visual programming
languages for robots. While our system runs on a subset of
JavaScript, the syntax is wrapped in a visual editor called
Blockly [15], shown in Figure 1. Blockly has been used in
several educational applications, such as App Inventor, Hour
of Code, and Made with Code1.

Visual programming interfaces have been used for pro-
gramming robots in educational settings, most notably with
Lego Mindstorms [16], [17]. Of these educational interfaces,
our system bears closest resemblance to that designed by
Wonder Workshop for its line of Dash and Dot robots2. Our
system, however, is not for educational purposes, and includes
programming language features like functions and lists that
are eschewed by these interfaces. Visual programming is also
used for applications outside of robotics. Scratch [18] and
Alice [19] are both examples of using visual programming
to make animations and interactive applications.

C. Primitives and robot architecture

This paper presents the choice of primitives and the imple-
mentation of the runtime system for CustomPrograms. In pre-
vious work, researchers have attempted to organize robot ca-
pabilities into primitives, such as in CARMEN [20]. However,
the open-source robotics community has since moved towards
other robot-agnostic middleware such as Player/Stage [21]
and ROS [22]. The primitives presented in this paper were

1https://developers.google.com/blockly/about/showcase
2https://www.makewonder.com/apps/blockly

not designed to work for all robots, but developing such an
implementation is an idea for future work (Section VII-B).

III. SYSTEM OVERVIEW

A. The Relay robot

We designed CustomPrograms for the Savioke Relay robot,
shown in Figure 1. However, our system could be applied to
any mobile robot with autonomous navigation and a touch
screen. The Relay robot is approximately 3 feet tall and
weighs 100 pounds. It can autonomously navigate indoor
environments, using a LIDAR, 3D sensors, and several sonar
sensors. The front of the robot features a 7-inch touchscreen
display, which can be used to show information and receive
user input. The robot has a bin with 0.75 cubic feet of storage,
covered by a lid which locks when closed. It can connect to
the internet to call elevators and phones. The robot also has a
docking station, where it can go to charge its battery.

The Relay’s main commercial use case is delivering items
to rooms in hotels. When the hotel staff receive a delivery
request from a guest, they enter a PIN number on the robot.
They then enter the room number to deliver to, load the bin,
and send the delivery. The robot travels to the guest room,
riding an elevator if needed. At the guest door, the robot calls
the room phone. When the guest answers the door, the robot
opens the bin. The robot also asks guests how their stay is.
Finally, the robot leaves and goes back to its docking station.

B. Primitives

Each primitive robot behavior is encapsulated in a function
call. The primitives are described below.

1) Robot movement: Table I shows a list of primitives
related to indoor navigation, a core capability for service
robots like the Relay.

Name and arguments Returns
goTo(string location) void
shimmy() void
move(number forward, number right) void
turn(number degrees) void
distanceTravelled() number

TABLE I: Primitives related to robot movement.

The goTo primitive makes the robot navigate to a location
named with a string ID. These IDs are human-friendly names,
like “Front Desk” or “Room 201.” We assume that the robot
has an existing mechanism for building maps and labelling
locations with names. Users can provide the location ID
manually, generate it programmatically, or use a helper block
that lists all the location IDs the robot knows about.

The shimmy primitive is a short side-to-side swaying,
which gives the robot a way to convey happiness. The move
and turn primitives move the robot relative to its current
position, allowing it to go to unnamed locations on the map.

2) User interaction: Another important capability of the
robot is the ability to interact with people. Our user interaction
primitives are shown in Table II. We include primitives not just
for displaying messages on screen, but also for receiving user
input, e.g., by asking a multiple choice question. Asking for

Name and arguments Returns
displayMessage(string text, number timeout=0) void
askMultipleChoice(string text, string[] choices,
number timeout=0)

string

askPasscode(string text, string passcode, number
timeout=0)

bool

askNumber(string text, number timeout=0) number
askRating(string text, number numStars, number
timeout=0)

number

askScale(string text, number min, number max, string
minText, string maxText, number timeout=0)

number

playSound(string sound) void

TABLE II: Primitives related to user interaction.

a PIN number enables applications that require user authen-
tication. The robot can also ask survey questions like star or
scale ratings, which makes the robot capable of information-
gathering applications.

The robot does not talk, but plays beeping and whistling
sounds with the playSound primitive. This helps to manage
expectations of the robot [23]. This was confirmed by Savioke
designers in personal communications with the authors.

3) Battery and bin: The last set of primitives, shown below,
relate to the robot’s battery and bin.

Name and arguments Returns
goToDock(string dock) bool
batteryPercentage() number
isCharging() bool
raiseLid() void
lowerLid() void
isLidOpen() bool

TABLE III: Other primitives for the robot.

We included the goToDock block for making the robot go
to a docking station autonomously. When combined with the
battery percentage primitive, this enables programs to run the
robot for a long period of time, charging its battery as needed.

C. Error handling

Error handling is an important topic when designing APIs.
However, we wanted users to be able to focus on their
programs, and assume that the primitives work as described.
The only primitive that we offered error handling for was
goToDock, which returns false if docking failed. For other
robots, we could have more primitives return a boolean success
value, depending on the robustness of the implementation.

D. Graphical interface

To facilitate programming for users without formal pro-
gramming experience, we used a graphical interface called
Blockly [15]. Blockly is not a programming language itself,
but a framework for building visual programming languages.
In Blockly, program elements such as constant values, binary
operators, while loops, or function calls are represented as
blocks shaped like puzzle pieces. These blocks can be con-
nected by stacking them, attaching values to inputs, or nesting
blocks inside of other blocks. Blockly allows custom blocks to
be made by defining a block’s appearance, inputs, and outputs.

We designed custom blocks for each primitive, with inputs
and outputs as shown in Section III-B. We also provided

Fig. 2: Screenshot of the interface, showing how blocks can
be pre-assembled for convenience.

standard programming language constructs such as loops,
conditionals, variables, functions, strings, lists, math utilities,
and logical operators. A full list of all the standard blocks can
be seen on Blockly’s website3.

Blockly does a shallow form of type checking, which can
eliminate some errors. For example, a block representing a
string value can’t be attached to a block expecting a number.
However, it does not guarantee the correctness of the types
used, and the type constraints can be circumvented.

A useful feature of Blockly is the ability to organize blocks
in an arbitrary hierarchy of menus. We organized the primitives
into categories as shown in Tables I, II, and III. The blocks
were color-coded so that blocks in the same category shared
the same color. Additionally, snippets of code, represented
as pre-assembled collections of blocks, can be added to the
menus. Figure 2 shows how we used this. The ask a multiple
choice question involves 4 different kinds of blocks, which we
pre-assemble in a commonly used configuration.

E. Compilation and runtime

Each block generates JavaScript code, by first recursively
generating code for its input blocks. The code for the block
itself is then assembled along with the inputs appropriately.
The code for the program as a whole is done by generating
code for the blocks at the top level of the program.

When the user starts the program, the generated JavaScript
code is sent to the robot. The robot runs a sandboxed
JavaScript interpreter4 on a Node.js server. The interpreter
parses and executes the code, including primitives. In our
implementation, the interpreter uses roslibjs [24] to call ROS
services and actions that execute the primitives.

IV. USE CASES

Before developing CustomPrograms, we interviewed 2 em-
ployees at Savioke about the possible uses for the Relay
robot, outside of deliveries in hotels. Additionally, we received
informal feedback from employees at Savioke acting as points
of contact for hotel customers. The use cases that turned up
included both internal uses and customer-facing programs.

3https://blockly-demo.appspot.com/static/demos/code/index.html
4https://github.com/NeilFraser/JS-Interpreter

A. Employee interviews
We conducted separate semi-structured interviews with 1

designer and 1 business person at Savioke. For question
3 below, we showed the employees the default version of
Blockly, from the Blockly website. The probe questions were:

1) When or where might you want to create a custom
program for the robot?

2) Are there examples of programs you’ve wanted to make?
3) What do you think of Blockly?
4) How much time do you want to spend learning to

program?
5) How much time do you want to spend making a demo

program for a conference?
The business person said they would want to spend around

20 minutes making a program if they had to make it on the
spot (e.g., at an off-site demo). The designer said that it would
be fine to spend more time creating programs, as long as they
were reusable. Both said an hour would be a reasonable time
to learn to use the system.

B. Use cases
1) Customizing deliveries: One use case, mentioned by the

designer, would be for hotel staff to customize the robot’s
interaction with the guest. For example, the robot could
show “Happy birthday!” on screen, if applicable. Having this
capability would also make it easy to pick up items like
laundry from a room, instead of doing a delivery. The robot
would just have to visit the room with an empty bin, and say
something different at the door. The designer also mentioned
that hotels have asked for multi-destination deliveries to staff
members in the hotel. Instead of returning to the front desk
after a single delivery, it could visit multiple floors in one trip.

2) Mingling with guests: Both employees mentioned min-
gling with hotel guests as a use case. The business person
described a kiosk mode, where the robot displays informa-
tion about the hotel while not in use, and has lightweight
interactions with guests. One hotel had expressed interest in
having the robot do something similar in the breakfast area
in the morning. Another hotel asked if the robot could go to
different locations in the lobby, displaying information at each
location. In these examples, the robot is also advertising itself,
potentially leading customers to ask for a delivery later.

3) Information gathering: A third type of capability that
was asked for revolved around information gathering. For
example, some Savioke employees discussed the idea of de-
tecting food trays in the hallways, and reporting the locations
to the hotel staff. Another example was to ask people in the
breakfast area to rate their stays. Reporting bad stays would
be useful for hotels, to avoid getting a bad review online.

4) Other uses: Savioke employees informally discussed
internal programs they wanted the robot to run. These included
running programs to test new software, and creating custom
behaviors for sales demos. In Section VI-D, we give two case
studies of our system being used for these purposes.

Additionally, researchers studying the use of mobile robots
in other settings such as retirement communities could use

the system. Such research requires a rapid prototyping system
to create a large space of candidate designs [25], before the
designs are narrowed down and detailed.

V. USER STUDY

We evaluated our system by conducting an observational
study with non-software engineering employees at Savioke,
and experienced programmers outside of Savioke. The goal of
the study was to understand how well each group could use
our system to make real-world programs. We also wanted to
see whether users thought the system was expressive enough
for the uses they had in mind.

A. Procedure

Participants were seated at a computer in view of the robot
they would program. The participants were first introduced to
the robot with a paragraph-length description and short video.
Then, they completed a 45-minute tutorial on how to use
CustomPrograms. In the tutorial, the users made an application
that sent the robot to a room, and a program that asked whether
to go to the “Front Desk” or to the dock (Figure 1).

The participants then created three programs with Custom-
Programs, one program at a time. These programs, shown in
Table IV, were based on the real-world use cases discussed in
Section IV. The robot was configured with locations including
room numbers, a “Front Desk”, and some poses in the nearby
area representing the lobby. Some participants (those in Group
2, see Section V-C) were allowed to optionally create a
fourth program, of their own choosing, if time allowed. All
participants were asked additional questions at the end of the
study. Finally, we also collected demographics such as gender,
age, and prior programming experience.

B. Measures

1) Ease of use: An objective measure of the system’s ease
of use was whether or not users were able to create the
three programs correctly. For each program, we determined
if the program correctly matched the program description we
gave. Because some errors are more serious than others, we
labeled the errors participants made, and classified them as
either major or minor. Although the labels could be subjective,
in practice, most of the errors made were easy to spot and
distinguishable from one another. We considered minor errors
to be easy to fix errors such as a missing statement or errors
that could be fixed by changing a constant value. An example
of a minor error might be displaying the wrong text on screen.
An example of a major error might be using an if statement
to repeatedly check a condition, instead of a while loop.

We also gathered subjective measures for ease of use. After
completing each program, users were asked to rate the easiness
of making the program on a 7 point Likert scale, and to
describe what the most challenging part of making it was.

2) Expressiveness: We considered two measures of expres-
siveness for this study. After being introduced to the robot, but
before being exposed to the programming interface, users were
asked to think of a specific task the robot could do other than

Prompt
1 Goal: The robot drives around the lobby, stopping at certain places to explain to guests what it does.

Program behavior: The robot should go to “Lobby 1” and “Lobby 2” over and over again. At each place it visits, it should
stop and show these three messages for 10 seconds each: “I’m Relay, a delivery robot”, “Need something? Call the front desk
and I’ll bring it up!”, “Have a great day!” While the robot is travelling, it should say, “Excuse me, on my way”.

2 Goal: Pick up items from a guest room.
Program behavior: When the program starts, the robot should go to the front desk, and ask which room number to go to.
The robot should be able to go to any room number it knows about. The robot should go to the room and open its bin. It
should say “Please load your items” and present a “Done” button. Once the guest touches the “Done” button, the robot should
close its bin and go back to the front desk. After that, the program should end. When the robot is out on a pickup it should
say “On a pickup” on its screen. When it’s returning to the front desk, it should say “Returning home” on its screen.

3 Goal: Stand in the lobby, going back to dock if it needs to charge.
Program behavior: The robot should go to “Lobby 1” and say “Welcome to the hotel!” for 60 seconds on its screen. After
showing the message for 60 seconds, it should check if its battery level is at least 50%. If so, it should show the message for
60 seconds again. If the battery is below 50%, the robot should go to the dock. While in the dock, it should say “Welcome
to the hotel!” for 30 seconds, and “I’m charging up” for 30 seconds, until its battery is full. Once the battery is full, it should
go back to the “Lobby 1” and repeat.

TABLE IV: The prompts describing each of the 3 programs to make in the user study.

hotel delivery. They were asked to describe these programs
in a step-by-step fashion. We analyzed these programs to
determine whether CustomPrograms could be used to make
them. Additionally, after making all three programs with the
interface, we asked users to rate their agreement with the
statement, “Any task the robot could possibly do, without
any hardware modifications, can be programmed using this
interface” on a 5 point Likert scale.

C. Participants

We conducted the study with two groups of participants.
The first group of participants, referred to as Group 1, were
employees at Savioke who were not in software engineering
roles. This group represented an important group of potential
users–designers, sales people, and engineers who would want
to prototype programs for hotels or for internal uses. To study
the system with programmers outside of Savioke, we recruited
an additional group, Group 2, from amateur robotics email lists
targeted at the San Francisco Bay Area. This group represents
another group of early users–researchers or other programmers
who might use our system outside of hotels. Participants in
the second group were required to have at least 2 years of
programming experience, and were offered a $50 Amazon.com
gift card for their participation.

There were 18 participants, 9 in each group. We asked all
participants to rate their prior programming experience on a
scale of 1 to 5, with 1 being no prior experience and 5 being
professional level of experience. All of the programmers in
Group 2 rated their prior experience a 5, while Group 1 had
less experience (M = 2.67, SD = 1), ranging from 1 to 4.
We consider experienced programmers to be any participant
who rated their prior experience a 4 or above. Based on
this definition, 2 of the users in Group 1 were experienced,
and 7 were not. The Group 2 programmers were asked to
approximate their years of programming experience, which
ranged from 6 - 50 years (M = 20.3, SD = 13.6). Group 1
included 7 males and 2 females with ages ranging from 23 to
64 (M = 36.1, SD = 13.5); the Group 2 programmers were all
male with ages ranging from 24 to 73 (M = 48.7, SD = 16.4).

VI. EVALUATION

There are three parts to the evaluation of CustomPrograms.
First, we examine its ease of use, using the data from our user
study. Second, we analyze its expressivity, based on use cases
from Section IV and from the user study. Finally, we present
two case studies showing how the system was used in practice.

A. Ease of use

In the user study, Group 1 made 46% of the programs with
only minor errors, compared to 77% by Group 2, shown in
Table V. The subjective ease of making each program is shown
in Table VI.

Program All users Group 1 Group 2
All programs 0.62 0.46 0.77
Program 1 0.71 0.56 0.88
Program 2 0.5 0.33 0.67
Program 3 0.65 0.5 0.78

TABLE V: The rate of programs made with only minor errors.

Program All users Group 1 Group 2
All programs 5.14 4.73 5.58
Program 1 5.71 5.44 6.00
Program 2 4.76 4.22 5.38
Program 3 4.94 4.50 5.38

TABLE VI: The perceived ease of making each program, on
a 7 point Likert scale.

When asked, two Group 2 programmers said they would
definitely prefer a graphical programming interface, and one
said they would definitely prefer a text programming interface.
The remaining gave a mixed response, saying that the graph-
ical interface would be better for people with less experience,
or for one-off tasks, while a text interface would be better for
complex programs or day-to-day use.

B. Error analysis

Across all three programs, we found that Group 1, which
had less experienced programmers, had a harder time making
programs than Group 2. The errors they made were mostly
related to programming concepts like infinite loops, string
concatenation, and programming logic.

Program 1 required an infinite loop to repeat the program
forever. However, 3 programmers, all from Group 1, used
a loop that repeated a finite number of times. One way to
alleviate this issue could be to have a repeat forever block.
In our system, programmers had to make infinite loops with
while-true, which is not obvious for new programmers.

Program 1 errors Type G1 G2
Did not loop forever Major 3 0
Did not show message when travelling Major 1 1
Looped 5000 times, but not forever Major 1 0
Did not show required message the first time
the robot travels

Minor 0 3

Did not show correct message when travelling Minor 1 1

TABLE VII: # of people making each error in Program 1.

In Program 2, the robot was supposed to ask for a room
number, and go there using string concatenation, as in,
robot.goTo(“Room ” + number). Although making the robot
go to a room number was part of the tutorial, users may not
have fully absorbed how to do it. Instead, users avoided that
part by presenting a limited subset of rooms as a multiple
choice question, or by going to lobby locations rather than
rooms. Two Group 1 users who used string concatenation did
so incorrectly, e.g., by omitting a space after the word “Room”.

Program 2 errors Type G1 G2
Could only go to a subset of possible rooms Major 2 1
Could only go to locations other than rooms Major 2 1
Did not concatenate Room with room number
correctly

Major 2 0

Did not go to front desk after pickup Major 0 1
Did not show correct message when travelling Minor 1 2
Did not show any message when travelling Minor 2 0

TABLE VIII: # of people making each error in Program 2.

Program 3 required programmers to continuously monitor
the robot’s battery state using while loops. These loops needed
to be nested inside another while loop, to repeat the program
forever. 4 of the Group 1 users used an if statement at the
top level to check the battery level, rather than a while loop
(Figure 3). 4 users used an incorrect primitive to make the
robot dock. We had a goToDock primitive specifically for this
purpose; however, these users used the goTo primitive, and
made the robot go to a location named “PreDockingPose,”
which was a location in front of the dock.

Program 3 errors Type G1 G2
Did not use correct block to go to dock Major 2 2
Did not continuously check battery before
docking

Major 3 0

Did not continuously check battery before
undocking

Major 1 0

Did correct checks, but did not loop program
forever

Major 1 0

Continuously checked for wrong battery
level before undocking

Minor 1 3

Displayed message for wrong amount of time Minor 1 2
Did not display correct message(s) on screen Minor 1 1
Continuously checked for wrong battery
level before docking

Minor 0 2

TABLE IX: # of people making each error in Program 3.

Fig. 3: A Group 1 participant’s version of Program 3. The
participant used while loops to wait for the battery to charge
and discharge, but used an if statement at the top level instead
of an infinite loop.

Overall, even the major errors made were not too serious,
and could be avoided with just a small additional investment
of development time or training.

C. Expressiveness

In this section, we characterize our system’s ability to create
applications envisioned by Savioke employees (Section IV)
and by user study participants. We consider 4 categories of
applications, based on how much effort it would take to imple-
ment: those that can be done, those that need minor software
changes, those that need major new software capabilities, and
those that require hardware modifications.

1) Savioke use cases: Our system implements all the primi-
tives necessary to do a normal hotel delivery, so small wording
changes can be made easily. Visiting multiple locations on one
trip is also just a small modification of normal delivery.

Our system can display messages to guests while mingling.
It can also interact with guests and gather information by
asking for star ratings, ratings on a numeric scale, or multiple
choice questions. The responses can be stored in variables or
lists. However, the robot can only communicate the answers
by displaying the information on screen. Other ways, such as
email, would need minor software development.

One behavior our system does not support is scheduling the
robot to run parts of the programs at certain times of day.
For example, the hotel would not be able to have the robot
automatically go to the breakfast area at 6 AM every day. We
chose not to implement this because we wanted to keep hotel
staff in control of the robot’s availability. Making this feature
available would require minor software development.

Our system does not include any perception-related primi-
tives, such as a hotel tray detector. We consider this to be major
development work, as many of these perception tasks are still
active areas of research. However, as perception primitives are
created, they can be added to the interface as blocks.

2) User study programs: Participants in the user study came
up with new use cases for the robot in 11 unique settings,
before they had seen the interface. The most common setting,
envisioned by 7 participants, was in an office building. Other
settings included homes, retirement communities, hospitals,
warehouses, and restaurants. Most programs were variations
on delivery, such as delivering medication in a retirement
community on a schedule, or delivering packages in an office.
A few applications were more novel, such as checking if the
front door was locked, or using the robot as a shopping cart.

8 of the 18 applications were doable immediately with our
system. 5 applications could be done with minor software
development. 2 applications required major new software
capabilities the robot did not have, such as using computer
vision to check if the front door of a house was locked. 4 of
the applications required hardware modifications to the robot,
such as readers for office badges, RFID, and credit cards.

Of the 5 applications that needed short-term development,
2 of them needed the ability to input text through a software
keyboard, 2 of them required the ability to schedule tasks for
the future, and 1 required the ability to call phones.

For the optional 4th program, one experienced programmer
tried to make the robot drive in a Fibonacci spiral, and said
that it would be interesting to use the robot to teach math.

After trying the interface, users were asked to rate, on
a scale of 1 to 5, whether CustomPrograms could program
any task the robot could do (barring hardware modifications).
Users gave a slightly positive response (M = 3.28, SD = 1.27)
to this question.

D. Case studies

1) Intel Developer Forum 2015: One of the motivating
use cases for CustomPrograms was to customize the robot’s
behaviors for trade shows and sales demos. In the summer of
2015, CustomPrograms was deployed to 5 Relay robots at the
Intel Developer Forum, a large technology conference. The
day before the conference, we developed and tested a demo
application in about an hour.

In our initial designs, all user input primitives waited indef-
initely for input. However, we realized that even at a crowded
conference, there might not always be someone around to
interact with the robot. As a result, we added an optional
timeout to all user input primitives, and updated our program.
If a timeout was set and no user input was provided, then the
primitives returned null, which the program handled.

At the conference, the robot’s bin was loaded with snacks
and water bottles. The robots then drove around to several
locations around its area, and offered a snack to anyone nearby.
If no one asked for a snack, the robot timed out and went
to a different location. The robot also told people to visit a
booth at the conference. While the program performed well,
one limitation was the inability to customize the navigation
behavior. Groups of people often crowded around the robot,
which made the robot stop moving. The robot could have made
more progress if it slowly pushed its way through crowds.

2) Internal testing: When CustomPrograms was deployed
to robots at Savioke, one technical business person wrote a
program for stress testing the robot. The program drove the
robot around the office continuously, stopping only to charge
its battery. During the first few attempts, employees noticed
that the robot behaved oddly after driving for several hours.
After investigating the issue, they discovered that the robot was
having difficulty storing log data after driving for a long period
of time. This issue had not been encountered before in the
field because the robot did not drive as frequently and as long
in normal use. This experience helped guide the development
of changes to fix this issue. Eventually, CustomPrograms was
able to run on a robot for over 24 hours continuously.

VII. DISCUSSION

We believe CustomPrograms, along with the design of our
primitives, is a useful framework for rapid programming on
the Relay robot, with some limitations.

Our user study results showed that users could make real-
world programs for the Relay robot, with programming errors
that are easy to correct. Most of the differences between the
two groups can be explained by prior programming experi-
ence. The first group had less programming experience, and
made basic programming errors like not properly concatenat-
ing a number to a string. Group 2 programmers had some
issues with the idiosyncrasies of our interface. For example,
in Program 3, just as many Group 2 users did not use the
goToDock primitive to go to the dock as Group 1 users.

During the study, participants had limited time (approxi-
mately 90 minutes) to learn the system and create three pro-
grams. We envision that users interested in using the interface
would spend more time learning and using the interface. As
shown in Section VI-D, our system enables new public-facing
applications to be developed and tested in a matter of hours.

We believe that the interface will scale to meet increas-
ing needs over time. Because we use a general-purpose
programming language, users will have expressive ways to
manage complexity. For example, some of the experienced
programmers in our study organized their code with functions,
although we never explained how. Additionally, we can add
more primitives to our system at any time, and organize them
in an ever-growing standard library.

A. Revision implications

Additional development of the system would make it more
usable. In Section IV, we discussed missing capabilities that
could be useful, like scheduling a program to run in the future,
perception primitives like a tray detector, and the ability to
send emails. And in Section VI-C, we mentioned text input
and the ability to call phones as missing primitives. We also
would want to refine the blocks and user interface to address
the issues we encountered in the user study.

B. Design implications

Blockly offers the full expressivity of a general-purpose
programming language, so it is not surprising that experienced

programmers had an easier time with the interface than less
experienced programmers. While it eliminates the need to
remember syntax, some researchers have long argued that
software engineering is inherently difficult [26]. As a result,
our system may never be fully intuitive for non-technical end-
users. However, an area for future research is to understand
whether we could adopt a “copy and paste literacy” model
of end-user programming [27]. In this model, technically
skilled users would create and distribute programs, while less
experienced users could modify and customize them [28].

It would not be difficult to implement our system on a
different robot. Each primitive would be implemented through
some commonly used middleware like ROS. For example,
robot.goTo(...) could simply send a goal to a ROS action that
navigates the robot, the exact implementation of which could
be different for each robot.

C. Limitations

CustomPrograms is built on top of Blockly, which was
designed with educational purposes in mind. In its current
form, Blockly generates global variables for all variables. This
naturally limits the maximum complexity of the program. The
scale of a program is also limited by the fact that code cannot
be shared between two programs.

In our study, we did not incentivize users to make correct
programs. This may have led to programmers not testing their
code or not carefully reading the program specifications. For
example, in Program 1, one of the experienced programmers
in Group 1 repeated the program 5000 times instead of making
an infinite loop. Most likely, the programmer was familiar
with infinite loops, but they either did not read the program
specification carefully enough, or they did not want to spend
the time to make the loop correctly.

VIII. CONCLUSION

We presented the design and evaluation of CustomPro-
grams, which allows users to rapidly experiment with new
applications for the Relay robot. CustomPrograms supports
many use cases such as deliveries, information gathering,
and more. Savioke employees successfully used the system
internally and at a large trade show. Our user study showed
that programmers could use the system to make real-world
programs. Our study also revealed common mistakes users
made and helped us design future iterations of the system.

REFERENCES

[1] H. Lieberman, F. Paterno, M. Klann, and V. Wulf, End-user develop-
ment: An emerging paradigm. Springer, 2006.

[2] B. Myers, “Visual programming, programming by example, and program
visualization: a taxonomy,” in ACM SIGCHI Bulletin, vol. 17, no. 4.
ACM, 1986, pp. 59–66.

[3] G. Biggs and B. MacDonald, “A survey of robot programming systems,”
in Proceedings of the Australasian conference on robotics and automa-
tion, 2003, pp. 1–3.

[4] A. Ko, B. Myers, and H. H. Aung, “Six learning barriers in end-
user programming systems,” in Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 2004, pp. 199–206.

[5] A. Repenning and A. Ioannidou, “What makes end-user development
tick? 13 design guidelines,” in End User Development. Springer, 2006,
pp. 51–85.

[6] D. Hils, “Visual languages and computing survey: Data flow visual
programming languages,” Journal of Visual Languages & Computing,
vol. 3, no. 1, pp. 69–101, 1992.

[7] S. Alexandrova, Z. Tatlock, and M. Cakmak, “RoboFlow: A flow-
based visual programming language for mobile manipulation tasks,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015, pp. 5537–5544.

[8] R. Bischoff, A. Kazi, and M. Seyfarth, “The MORPHA style guide for
icon-based programming,” in Robot and Human Interactive Communica-
tion, 2002. Proceedings. 11th IEEE International Workshop on. IEEE,
2002, pp. 482–487.

[9] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469–483, 2009.

[10] C. Atkeson and S. Schaal, “Robot learning from demonstration,” in
International Conference on Machine Learning (ICML). Morgan
Kaufmann, 1997, pp. 12–20.

[11] J. Huang and M. Cakmak, “Supporting mental model accuracy in trigger-
action programming,” in Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing. ACM, 2015,
pp. 215–225.

[12] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman, “Practical
trigger-action programming in the smart home,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2014, pp. 803–812.

[13] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[14] M. Mernik, J. Heering, and A. Sloane, “When and how to develop

domain-specific languages,” ACM computing surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[15] N. Fraser et al., “Blockly: A visual programming editor,” 2013.
[16] D. C. Cliburn, “Experiences with the LEGO Mindstorms throughout the

undergraduate computer science curriculum,” in Frontiers in Education
Conference, 36th Annual. IEEE, 2006, pp. 1–6.

[17] P. B. Lawhead, M. E. Duncan, C. G. Bland, M. Goldweber, M. Schep,
D. J. Barnes, and R. G. Hollingsworth, “A road map for teaching intro-
ductory programming using LEGO Mindstorms robots,” ACM SIGCSE
Bulletin, vol. 35, no. 2, pp. 191–201, 2003.

[18] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, p. 16, 2010.

[19] C. Kelleher, R. Pausch, and S. Kiesler, “Storytelling Alice motivates
middle school girls to learn computer programming,” in Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM,
2007, pp. 1455–1464.

[20] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization
in mobile robot programming: The Carnegie Mellon navigation (CAR-
MEN) toolkit,” in Intelligent Robots and Systems, 2003.(IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, vol. 3. IEEE,
2003, pp. 2436–2441.

[21] T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0:
Toward a practical robot programming framework,” in Proceedings of
the Australasian Conference on Robotics and Automation (ACRA 2005),
2005, p. 145.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[23] S. Yamada and T. Komatsu, “Designing simple and effective expression
of robot’s primitive minds to a human,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006,
pp. 2614–2619.

[24] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski,
M. Wills, and S. Chernova, “Robot Web Tools: Efficient messaging for
cloud robotics.”

[25] B. Buxton, Sketching user experiences: getting the design right and the
right design. Morgan Kaufmann, 2010.

[26] F. Brooks, No silver bullet. April, 1987.
[27] D. Perkel, “Copy and paste literacy? Literacy practices in the production

of a MySpace profile,” xxxix. Informal Learning and Digital Media:
Constructions, Contexts, Consequences, eds. Kirsten Drotner, Hans Sig-
gard Jensen, and Kim Schroeder (Newcastle, UK: Cambridge Scholars
Press, 2008), 2006.

[28] W. E. Mackay, “Users and customizable software: A co-adaptive phe-
nomenon,” Ph.D. dissertation, Citeseer, 1990.

