
Situated Language Understanding with
Human-like and Visualization-Based Transparency

Leah Perlmutter1, Eric Kernfeld2 and Maya Cakmak1
1Computer Science & Engineering Department 2Department of Statistics

University of Washington, 98195, Seattle, Washington, USA

Abstract—Communication with robots is challenging, partly
due to their differences from humans and the consequent
discrepancy in people’s mental model of what robots can see,
hear, or understand. Transparency mechanisms aim to mitigate
this challenge by providing users with information about the
robot’s internal processes. While most research in human-robot
interaction aim towards natural transparency using human-like
verbal and non-verbal behaviors, our work advocates for the use
of visualization-based transparency. In this paper, we first present
an end-to-end system that infers task commands that refer
to objects or surfaces in everyday human environments, using
Bayesian inference to combine scene understanding, pointing
detection, and speech recognition. We characterize capabilities
of this system through systematic tests with a corpus collected
from people (N=5). Then we design human-like and visualization-
based transparency mechanisms and evaluate them in a user
study (N=20). The study demonstrates the effects of visualizations
on the accuracy of people’s mental models, as well as their
effectiveness and efficiency in communicating task commands.

I. INTRODUCTION

One of the key interactions between a human and a function-
oriented robot is commanding the robot to perform a useful
task. This interaction can be simplified to the press-of-a-
button for single-purpose robots like the vacuum cleaner robot
Roomba. But for multi-purpose complex robots, the space
of possible tasks is unbounded. As a result, commanding
the robot requires much richer communication, including the
ability to reference the environment. For example, users of
a robot that can fetch and deliver objects need to be able to
refer to an arbitrary target object and delivery point. Similarly,
commanding a robot that can use different cleaning tools on
different surfaces requires the ability to specify a tool (e.g., a
feather duster) and a target surface (e.g., window sills).

Enabling this type of rich communication between humans
and robots is still challenging. Part of the challenge can
be ascribed to errors and ambiguities in natural language
processing, visual scene understanding, and recognition of
non-verbal signals from humans. But more importantly, this
challenge is magnified by people’s inability to judge what
robots can see, hear, or infer, whether or not they are correct
and accurate. Our research addresses this problem of mental
model discrepancy.

Human-human communication relies on several mecha-
nisms to avoid, detect, and mitigate mental model discrep-
ancies. For example, people use gaze, gestures, and facial
expressions to indicate their understanding while listening
to someone. They also verbally restate their understanding

Fig. 1: LUCIT combines speech recognition, pointing detection, and
scene understanding to interpret situated natural language commands.
LUCIT’s transparency mechanisms allow the user view to the output
of these intermediate internal processes.

to confirm it. Similar mechanisms can help human-robot
communication, by providing transparency about the robot’s
perception and inference processes. In fact, a large body
of human-robot interaction research tackles the problem of
designing human-like verbal and non-verbal communication
behaviors for robots.

While human-like transparency mechanisms can capitalize
on people’s natural ability to interpret them, they are limited in
how much they can express about the robot’s complex internal
processes. In this paper we explore an alternative transparency
channel that is not afforded in human-human communication:
visualizations. While visualizations may feel less natural, they
are extremely powerful tools for communicating computa-
tional concepts. Many researchers and engineers rely on them
while developing new robotic capabilities. The question we ask
in this work is whether naive users can benefit from simple
visualizations that reveal what a robot can see, hear, and infer.

In this paper, we first develop an end-to-end situated
language understanding system, LUCIT, that combines scene
perception, pointing detection, and speech processing. The
system enables users to command a robot to perform tasks
referencing objects and surfaces in realistic room-scale scenes.
We characterize LUCIT’s capabilities through systematic tests
with data collected from 5 users. Next, we design both
human-like (speech, gaze, pointing) and visualization-based
transparency mechanisms for LUCIT. Through a user study with
20 participants we demonstrate the benefits and characterize
the use of visualization-based transparency mechanisms.



II. RELATED WORK

Situated language understanding: Our work aims to en-
able users to communicate robot tasks that reference the
environment. Previous work has contributed a number of
approaches towards this goal. Many combine computer vision
methods with alternative language understanding techniques
to resolve references to the scene [10, 17, 23, 25]. Other work
incorporates understanding of actions or tasks to be performed
in the referenced environment [3, 9, 24, 30, 34]. Researchers
have also incorporated perception of human gesture and gaze
to enhance verbal language understanding [8, 20, 22, 31].
Others propose to use dialogue to collaboratively and incre-
mentally move towards a common ground about a reference
[1, 2, 5, 7, 14, 18]. Our system combines some of these
elements in a Bayesian framework with scene and human
gesture perception and different transparency mechanisms.
We focus on tasks in room-scale everyday scenes, while
most previous work involves manipulation on narrow tabletop
scenes or navigation on a map.

Mental Models and Transparency in HRI: A large body of
research in the HRI community studies verbal and non-verbal
communication with robots (e.g., [11]). Of particular interest
to our paper are those focusing on how people’s mental model
of a robot influences the way they talk or gesture to a robot.
Kiesler discusses the influence of robot design and social cues
on people’s mental models of the robot [15]. Similarly, Fischer
demonstrates the role of people’s preconceptions in how they
talk to robots [6]. Vollmer et al. show that people modify their
actions when demonstrating a task to a child-like robot [37].
A robot’s speech can also influence how people speak to it
in consecutive interactions; for example Iio et al. demonstrate
that people align their lexicon to that of a robot [13]. Their
previous work demonstrated a similar entrainment effect in
pointing gestures [12]. Other work provides characterizations
of how people are likely to naturally talk to robots [16, 29, 36].

Researchers have also demonstrated that mental model dis-
crepancies can lead to interaction challenges [33]. Closely re-
lated to our work, Liu and Chai find that perceptual differences
between humans and robots result in communication chal-
lenges [21]. To mediate these differences, they present a graph-
based representation of the robot’s perceived environment and
propose to use this graph in reference resolution, with learned
weights that promote matched perceptual attributes.

Transparency mechanisms have been shown to mitigate the
challenges of mental model discrepancy. Pejsa et al. use facial
expressions to provide transparency about dialog uncertainties
[28]. Crick et al. show that people give task demonstrations
that are more usable for the robot if they are given robot-
like perception of the environment [4]. Our visualization-
based transparency mechanisms are intended to have the same
effect by revealing the robot’s limitations to the user. Thomaz
and Breazeal show that natural transparency mechanisms like
gaze can steer the human’s behavior while demonstrating
a task [35]. Several others have shown positive effects of
transparency mechanisms in HRI contexts [27, 32].
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Fig. 2: Overview of the LUCIT system.

Novel interfaces for human-robot communication: While a
majority of work in the HRI community is driven by the
human-human interaction metaphor, some researchers have
proposed clever ways in which affordances of a robot that are
different from those of humans can be leveraged for effective
communication. We consider our work to belong in this
category. Some examples include Nguyen et al.’s laser pointer
based interface for referencing objects in the environment [26]
and the use of projections by the robot as a way to highlight
parts of the environment [19].

III. SITUATED LANGUAGE UNDERSTANDING

We focus on the scenario of commanding a household robot
to do tasks within a room-scale environment. The robot is a
mobile manipulator capable of navigating the room, picking up
and placing objects and tools from and to horizontal surfaces,
and applying different cleaning tools on surfaces. Hence the
robot has three parametrized actions that can be commanded:
• a1: pickup(τ) where τ is an object,
• a2: place(τ) where τ is a surface,
• a3: clean(τ) where τ is a surface.
Robot actions are applicable in certain contexts. The

pickup action requires the robot’s hand to be free. The
place action requires the robot’s hand to contain an object
(i.e., a previously picked up object). The clean action
requires the robot’s hand to contain a particular type of object,
namely a cleaning tool. The goal of our system is to infer the
action and the parameter being commanded by a user.

Our system has three main perceptual components: scene
understanding, pointing recognition, and speech recognition.
Our situated language understanding method combines the
output of these perceptual processes to infer the commanded
action and its parameter. The transparency mechanisms reveal
information about the three perceptual components as well
as the final output of the system. We refer to our system
as LUCIT which stands for “Language Understanding with
Complex Inference Transparency”. An overview of LUCIT is
shown in Fig. 2. The next sections give more detail about each
component of LUCIT.

A. Perceptual components

1) Scene understanding: LUCIT uses a fixed RGBD sensor
to perceive the environment. We assume that the robot is



familiar with the scene and is given a prior distribution of
surfaces of interest. Surfaces are detected more precisely using
planar RanSaC. Individual objects on the surface are detected
using K-means clustering. In our experiments, we assume the
robot knows which objects are present in the scene and where
each object should be at each step of the task sequence1.

Once all surfaces and objects are detected the robot com-
putes the relationships between all detected entities to create
the scene graph. Similar to Liu and Chai’s vision graph [21],
we represent the scene with an attributed relational graph in
which each node and edge can have attributes attached to
it. The scene graph G = (N,E) is a directed graph with p
nodes N = {ni|i = 1, .., p} corresponding to entities detected
in the environment and q edges E = {ej = (n0, n1)j |j =
1, .., q;n0, n1 ∈ N} corresponding to relationships between
those entities. Attributes associated with each node include a
type τ ∈ {τs, τo} (τs:surface, τo:object) and a set of keywords
(nouns and adjectives) that might be used to refer to the
object directly. Attributes associated with edges include a set
of keywords (prepositions like on, above, or next to) that might
be used to describe the relationship between the two entities.

2) Pointing recognition: Humans often use deictic ges-
tures to refer to entities in the environment. To harness this
additional communication channel, LUCIT takes input from
another RGBD sensor facing the user to track them, detect
when they are pointing, and infer the target of their pointing
given the layout of the scene. To enable association between
pointing gestures and entities in the environment, we register
the user-facing and scene-facing RGBD sensors in the same
coordinate frame through a one-time calibration procedure. We
use ROS openni tracker2 to track the person’s skeleton and
obtain pointing directions by drawing vectors from the user’s
head to each hand. Next, we trace a ray in the direction of
these vectors to assign weights to entities in the environment
based on their shortest distance to the pointing rays. The robot
assumes that a pointing gesture is happening when a skeleton
is detected and any point on a pointing ray is within a threshold
distance to some object or surface in the scene.

3) Speech recognition: For speech recognition we use
the Python speech recognition package3 to capture pause-
separated utterances from a microphone and the Google speech
API to transcribe each utterance into text.

B. Situated Language Understanding

The language understanding problem addressed in this work
is the inference of the intended command (an action and its
parameter) given the state of the environment and the user’s
utterance and gesture. We formulate this inference problem
as a Bayes Network, shown in Fig. 3. We represent the
distributions over actions and targets (i.e., parameters of the
action) with two discrete random variables A and T . We
represent the world state with the random variable W as

1This is done to avoid challenges with real-time room-scale object recog-
nition which is outside the scope of this work.

2http://wiki.ros.org/openni
3https://pwww.webpage.orgypi.python.org/pypi/SpeechRecognition/
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Fig. 3: Bayesian network that models the language and gesture
generation process.

a distribution over possible scene graphs (Sec. III-A1). We
define L as the distribution over possible utterances and G
over possible pointing gestures. Finally, we represent context
with the variable C to capture the preconditions that affect
whether an action is applicable. We model language and
gesture production as generative processes with the influence
relationships shown in Fig. 3.

The problem can be stated as inferring distributions over
unknowns given the observables:

a∗, t∗ = argmax
A,T

P (A, T |W,C,L,G) (1)

Using the Bayes rule and the chain rule (based on the
influence structure of the defined Bayes Network), we obtain:

a∗, t∗ = argmax
A,T

[
P (A|C)P (T |W,A)

P (G|T,W )P (L|A,W, T )
]

(2)

This decomposition yields four components that are intuitive
to model. We discuss each of them next.

1) Action-context model: The simplest part of our model
is the conditional probability distribution P (A|C) which is a
uniform distribution over all actions whose preconditions are
met in a given context as discussed in Sec. III. When the
robot’s hand is empty, the only action possible is pickup.
As we do not currently differentiate cleaning tools from other
objects, both place and clean are possible when the robot
has something in its hand.

2) Parameterization model: Each action type (pickup,
place, or clean) has a single parameter of particular type
(object or surface). Given an action ai and the state of
the world G, we model P (T |W,A) as a uniform distribution
over all nodes of G whose type attribute τ is equal to the
parameter type of ai.

3) Gesture model: We represent pointing gestures as nor-
malized vectors in 3D (specified by a pitch and a yaw)
indicating the direction of pointing from the user’s known
location. We model the distribution over pointing gestures
given the world state and the target P (G|W,T ) as a binomial
Normal distribution whose mean is the direction of the ray
from the user to the target and covariance is a diagonal matrix
with empirically determined standard deviations.

4) Language model: Lastly we model the distribution over
possible utterances given the state of the world and the
intended action and target. For computational simplicity, rather
than explicitly modeling a probability density function over
all possible utterances, we approximate P (L|A,W, T ) with
function φ(a, t, `) that scores an observed utterance ` for a

http://wiki.ros.org/openni
https://pwww.webpage.orgypi.python.org/pypi/SpeechRecognition/


candidate action-target pair. We expect that an utterance will
contain a verb associated with the commanded action and
a noun phrase describing the target. The noun phrase can
include keywords (names or adjectives) associated with the
target and, possibly, prepositional phrases that specify spatial
relationships of the target to other entities in the environment.
Hence, we decompose the scoring function as:

φ(a, t, `) = φverb(a, `) + φnoun(t, `) +
∑
t′∈Rt

φnoun(t
′, `)

where φverb(a, `) and φnoun(t, `) are the number of occur-
rences of keywords associated with action a or target t in
utterance `; and Rt is the set of nodes in the scene graph G that
have at least one edge connected to the node corresponding
to target t. We do not check for the particular relationship
between t and t′, which proved to be unnecessary in practice.

IV. TRANSPARENCY MECHANISMS

Transparency mechanisms allow people to view additional
information, besides the system’s intended output, about its
internal processes. LUCIT’s final inference about the user’s
command relies on several intermediate components, high-
lighted in Sec. III. We implement two types of transparency
mechanisms for these components, described in the following.

A. Platform

Although language understanding capabilities of LUCIT are
platform-independent, transparency mechanisms can depend
on the particular robot’s embodiment. The robot used in this
work is a PR2; a mobile manipulator with two arms and an om-
nidirectional base. Although not particularly anthropomorphic,
PR2’s 7 DOF (degrees-of-freedom) arms and 1 DOF gripper
make it possible to replicate human-like pointing gestures.
PR2 has a pan-tilt sensor head enables interpretable head
gestures and gaze. For visualization-based transparency, we
add a screen and an Oculus headset to the platform.

B. Human-like transparency

We implement three human-like transparency mechanisms.
1) Speech: The first mechanism is verbal confirmation;

a common method in human-robot dialog (Sec. II). The
robot generates a sentence to describe a command based on
the simple template “You would like me to verb-phrase
noun-phrase, is that correct?” The verb-phrase is
a fixed verb phrase associated with the inferred action
(a1:“pick up”, a2: “place the object on”, a3: “clean”). The
noun-phrase is a fixed keyword associated with the in-
ferred target (e.g., “the feather duster,” “the top shelf of the
bookshelf,” “the chair”). Verbal confirmations provide partial
transparency into the robot’s speech recognition and language
understanding components.

2) Pointing: As part of command confirmations the robot
points to the target of the inferred command. Pointing gestures
are produced by blending four arm gestures corresponding to
four corners of a scene segment. The blending weights are
determined by the position of the target relative to the segment
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Fig. 4: LUCIT’s visualization which provides additional transparency
about its internal processes including speech recognition, pointing
detection, scene understanding, and command inference.

corners. Pointing provides additional transparency into the
robot’s scene understanding component by associating a noun
phrase with a spatial location.

3) Gaze: The robot’s pan-tilt head can be pointed at any
point in the 3D scene. We use this channel for additional
transparency about the user’s pointing gestures by turning its
head towards the pointed target during confirmation.

C. Visualization-based transparency

The visualization-based transparency of LUCIT has four
components (highlighted in Fig. 2) that correspond to the
outcomes of the three intermediate perceptual modules and
the language understanding module. A snapshot of the visu-
alization designed for this purpose is shown in Fig. 4, with
four components highlighted. The 3D view of the interface
displays a point cloud snapshot from the scene-facing camera.
Colored planes and point cloud segments overlay the surfaces
and objects detected in the scene. The unique IDs given to
surfaces and objects (e.g., “surface 7”) appear near the targets.
Pointing or gaze vectors appear as mobile cursors, and the
pointing target is highlighted by lightening its color. The top
right display indicates whether the human is detected and
whether the robot is paying attention to pointing. The middle
right display indicates whether the microphone is listening
or off and it displays the exact utterance obtained from the
speech recognition module. The bottom right display shows
the inferred command, phrased using the noun-phrase and
verb-phrase template described in Sec. IV-B1.

We explore two modalities for visual transparency: a regular
2D screen placed near the user and an immersive virtual reality
(VR) headset. The elements of the interface described above
are mostly the same in both interfaces, with the following
differences. On the 2D screen, two large, round cursors (one
for each hand) indicate pointing direction, whereas pointing
with arms is disabled on the VR headset. Instead, the user can
point to objects by looking at them to center them on the VR
headset screen. This screen includes a smaller, cross-shaped
cursor at the center. In addition, text placement is optimized
for readability in each interface.

V. SYSTEM EVALUATION
We first characterize the performance and capabilities of

LUCIT with data collected from people using only human-like
transparency mechanisms.
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Fig. 5: The scene used in our system evaluation (Sec. V) and user
evaluation (Sec. VI) in its initial configuration and the 15 commands
that participants gave to the robot with targets (object or surface)
annotated on the scene.

Procedure: The data collection involves 4 sessions in which
the participant gives 15 pre-specified commands (Fig. 5)
to the robot. The commands are described to participants
visually with an image showing the scene and the robot, both
before and after the command is executed. The target object
or surface is highlighted in these images (possibly in the
robot’s gripper). The commands are grouped into 6 batches
(combinations of pickup-place or pickup-clean*-place). After
giving the commands in each batch, the participant is asked
to demonstrate the actions corresponding to that batch, before
moving on to the next batch. This is done to vary the scenes in
which commands are given without having the experimenter
interrupt the flow of the interaction. To further increase the
variety in our data participants are given different instructions
in each session. In the first two sessions they are told not to
use pointing and in the last two they are asked to use it. In
the first and third sessions they are told to refer to the object
directly and in the other sessions they are asked to not do that.
Measurements: We characterize the performance of LU-
CIT with the accuracy of (a) speech recognition (measured by
the Levenshtein distance between the ground truth utterance
and the speech recognizer output); (b) spoken target inter-
pretation (whether the correct target was identified based on
speech); (c) pointed target interpretation (whether the correct
target was identified based on pointing); and (d) the overall
inferred target.
Results: Data was collected from 5 participants, for 15
commands, in 4 sessions, resulting in 300 trials (150 with
pointing). Some trials involved multiple attempts before con-
firmation, yielding a total of about 620 utterances. Table I
presents the measurements from this data.

TABLE I: Summary of system performance (mean of different
accuracy metrics) in 620 utterances across four sessions (S1-4).

metric S1 S2 S3 S4

speech 4.53 4.24 2.42 2.77
spoken target 90.12% 52.10% 78.70% 23.15%
pointed target N/A N/A 7.41% 14.81%
inferred target 88.89% 52.10% 64.81% 56.48%

We observe that the average accuracy of LUCIT’s combined

target identification has a large variance across sessions, rang-
ing between about 50% and 90%. Note that 50% accuracy
means that providing the correct command took about 2
attempts on average, and 90% accuracy means the first attempt
was successful most of the time. The data reveals errors in
speech recognition (Levenshtein distance around 2.5 to 4.5)
which are common with off-the-shelf generic speech recog-
nizers. Despite these errors, LUCIT can infer the referred target
purely from speech. The accuracy is higher when participants
refer to the object directly by naming it (sessions 1 and 3). In
contrast, it took a greater number of failed attempts to verbally
refer to an object without directly naming it (sessions 2 and
4), e.g., by using references to nearby objects.

Pointing on its own was sufficient for identifying the target
in very few attempts. Often times the pointing detector failed
to track the person or it was inaccurate. Combining speech and
pointing resulted in worse performance in session 3 and better
performance in session 4. In some cases, pointing appeared to
have distracted people from accurately specifying the target
with speech (e.g., “pick that up” “place it over there”),
without offering an accurate alternative. In other cases where
speech and pointing alone each underspecified the command,
LUCIT was able to infer the correct command by combining
them. For example saying “Pick up the cup” (ambiguous about
which cup – red or green) combined with pointing that is
inaccurate but relatively closer to the red cup, allows the
system to infer that the correct command is to pick up the
red cup. Participants were able to refer to targets indirectly
with speech, even though it took more attempts than referring
directly. For example, the target in the utterance “Put it down
next to the green cup” was correctly inferred as the middle
shelf of the bookshelf, based on the relationship between the
“green cup” and the “middle shelf” in the scene graph.

Overall, the system evaluation demonstrated that LUCIT en-
ables interpretation of multi-modal commands that reference
the environment; however, there is room for improvement
particularly in the interpretation of more complex referential
commands and commands that incorporate deictic gestures.

VI. USER EVALUATION

Next, we conducted a user study to evaluate the impact of
visualization-based transparency mechanisms.

A. Study Design

Our study has three conditions:
1) Baseline: Only human-like transparency mechanisms.
2) Screen: Visual transparency with a screen in addition to

human-like transparency.
3) VR: Visual transparency with an immersive VR headset

in addition to human-like transparency.
We use a within-participants design (i.e., all participants

interact with all conditions). All participants first interact with
the baseline condition. The order of the other conditions is
counter-balanced. Participants perform the same set of tasks
(i.e., providing 15 commands in 6 batches) in each condition
(Fig. 6), in the same way as our data collection (Sec. V).



The sessions for our experimental conditions are split into
two parts. In the first part the participant gives the first 4
batches of commands (i.e., first 10 commands), with the trans-
parency mechanisms specific to that condition. In the second
part, the participant completes the last 2 batches (i.e., last
5 commands) with the transparency mechanism taken away,
defaulting back to the human-like transparency. This is done
to distinguish between real-time effects of the transparency
mechanisms (P1) and their potential after-effects (P2).

Session 1 Session 2 Session 3

P1 P2 P1 P2 P1 P2
Baseline Screen or VRScreen or VR

t1 ... t10 t11... t15 t1 ... t10 t11... t15 t1 ... t10 t11... t15

Fig. 6: Ordering of sessions, conditions, session parts, and tasks in
our study design.

Note that studying after-effects requires the ability to
compare performance on the same set of tasks before and
after adding the visualizations. Hence we keep the baseline
condition always in the first session. Counterbalancing all
three conditions would have placed the baseline condition after
visual transparency conditions for some users, which would
have resulted in the baseline condition being subject to after-
effects. Our data analysis compensates for this study design
by making assumptions about learning effects across sessions.

B. Procedure

After completing a consent form, participants are taken to
the study area and seated facing the scene (Fig. 5) and are
introduced to the tasks of giving verbal commands and demon-
strations. We ask them to practice giving the first command
while the robot is off. Next they begin interacting with the
robot in the first condition. After each session, participants
complete a questionnaire specific to the condition. Before the
two experimental conditions, participants are given additional
instructions about the components of the visual interface. After
all sessions, participants respond to additional questions and
provide demographic information.

C. Interaction

During the study the robot is controlled by a finite-state-
machine with the following behavior. At the beginning of
each batch the robot says “Taking a minute to look around the
room,” gazes towards the scene, and updates its scene graph.
Then it turns to the participant, requests a command by saying
“What should I do next?”, and activates the microphone for
the response. If an invalid utterance (e.g., silence) is detected,
the robot speaks an error message (e.g., “I could not hear
you.”), and repeats the request for a command. When a valid
utterance is detected, the robot infers the command using the
scene and the pointing information, and invokes a confirmation
(Sec. IV-B1). If the user confirms the command, the robot
moves on to the next command or demonstration. Otherwise,
it requests the command again by repeating “What should I do
next?” If it cannot infer the action type it says “I did not hear

an action word or a verb.” If multiple inferences are equally
likely, it says “Please be more specific.” When a demonstration
point is reached the robot says “Please demonstrate the last
n commands.” To avoid errors in the task progression, user
confirmations and ending of demonstrations are invoked by
the experimenter.

D. Measurements

We measure the impact of transparency mechanisms with
several metrics. Objective quantitative metrics (per command)
include: accuracy (correctness of confirmed action and target),
task completion time (from the robot’s command request to the
user’s confirmation), number of repetitions before confirming,
and number of words used. The user’s perceived accuracy of
the robot’s perceptual components (scene, pointing, speech)
and of their own mental model of what the robot can un-
derstand is obtained with four 7-point Likert-scale questions
administered after each condition. Qualitatively, we assess the
user’s mental models based on an open-ended question, asking
participants to describe how the robot perceives the world.

We ask additional Likert-scale questions to characterize peo-
ple’s perception of how different input channels (speech, point-
ing) contribute to the communication of commands and output
channels (robot’s speech, gaze, pointing, and visualizations)
contribute to their awareness of the robot’s understanding.
In the experimental conditions, additional questions ask the
participant to rate the contribution of different visualization
elements in their awareness of what the robot can see, hear, or
infer. Two questions ask the participant to subjectively assess
whether the visualization was useful and whether it was useful
even after being removed. Questions administered at the end
of the study ask participants to compare the two visualization
modalities and rank the three conditions.

E. Hypotheses and statistical analysis

Our study aims to test the following three hypotheses.
H1: Adding visualization-based transparency after natural
transparency will positively impact communication.
H2: By improving the user’s mental model, visualization-
based transparency will improve communication even after it
is removed.
H3: The medium in which visualizations are provided will not
impact communication.

The dependent variables for measuring communication
performance include the various task metrics mentioned in
Sec. VI-D. Independent variables are the transparency con-
dition (Baseline, Screen, VR), session order (1, 2, 3), and
part of the session (P1, P2). To test H1 and H2, we assume
that there is linear learning on a log scale across the three
sessions. This means that the percent change in average task
metrics due to learning between sessions 1 and 2 equals that
of learning between sessions 2 and 3. We use the following
random effects model to capture the setup of our experiment:

Yij = zi + µj + βlearn(sij − 1) + εij (3)



where εij ∼ N(0, σ2
phase) is a random noise term describing

natural variability in a single measurement Yij ; zi ∼ N(0, σ2
i )

is a random effect specific to participant i describing how their
initial aptitude for the task differs from average; βlearn is the
average effect of learning that occurs between two consecutive
sessions; µj is a fixed, unknown parameter that corresponds to
the average value of the task metric on a log scale, where j =
1..6 corresponds to a combination of transparency condition
and session part (i.e., Baseline-P1, Baseline-P2, Screen-P1,
Screen-P2, VR-P1, VR-P2); sij is the session number (1, 2,
3) in which the condition j occurs for participant i.

The order counterbalancing of the Screen and VR conditions
allows us to separate the learning effect (βlearn) from the
transparency-related effects. Our model allows testing H1 with
the null hypotheses µ1 = µ3 and µ1 = µ5 (for P1) and H2
with the null hypotheses µ2 = µ4 and µ2 = µ6 (for P2).
Similarly, H3 is tested with the null hypotheses µ3 = µ5 (for
P1) and µ4 = µ6 (for P2). Note that tests of H3 do not depend
on our assumption of constant learning rate, but tests of H1
and H2 do.

VII. FINDINGS

Our study was completed by 20 participants (7F, 13M) in
the age range 18-36 (M=26.55, SD= 4.93). Fig. 7 presents
the objective metrics obtained from the study and Fig. 9
summarizes the responses to the questionnaire. Next we go
through and highlight some observations from these results.
Real-time benefits of visual transparency. Visual trans-
parency, particularly when provided on a screen, improves
several objective metrics. The commands given by participants
were significantly more accurate (Fig. 7a, P1) and took less
time to give (Fig. 7b, P1) in the Screen condition. Both
experimental conditions (Screen and VR) had a smaller num-
ber of attempts (Fig. 7c, P1) and number of words used to
give a command (Fig. 7d, P1); however, the difference was
statistically significant only for number of words in the Screen
condition. Participants strongly agreed (with an average rating
above 6 for screen on a 7-point Likert scale, Fig. 9e) that both
visualizations helped improve their mental model.
After-effects of visual transparency. The effects of visual
transparency did not carry through to the second part of the
experimental condition sessions (P2) during which they were
removed. Nonetheless, having the visualizations during P1
did not negatively impact their performance in P2. Addition-
ally, participants had an overall positive agreement with the
statement that visualizations help even after being removed;
however, not as high as when they are available (Fig. 9e). They
agreed with this statement significantly more referring to the
Screen, compared to the VR.
Behavioral differences with visual transparency. When giv-
ing commands in the experimental conditions, participants
started using the unique keywords assigned to objects and
surfaces by the robot. Some examples include “Pick up object
72 (Screen),” “Place it on 5 (VR)”, “Clean surface number
6 (Screen).” We saw that 12/20 participants in the screen
condition and 11/20 participants in the VR condition used

(a) (b)

(c) (d)

p=0.02

(e) (f)

p=0.02

p=0.002

p=0.004

p=0.01

p<0.001

p<0.001

Fig. 7: Analysis of objective metrics across the three conditions
and two parts of each session (P1, P2). (a) Percentage of correct
commands. (b) Time taken per attempt at a command. (c) Number
of attempts until a command is confirmed. (d) Number of words
used in each command attempt. Percentage of commands for which
(e) input language and (f) pointing contributed to the inference of
the target. Significant differences indicated with p values for the null
hypotheses stated in Sec. VI-E. Error bars indicate standard error.

Fig. 8: Examples of people pointing while checking the visual
interface in the screen condition.

such a reference at least once. However, the participants did
not exclusively use robot assigned names. On average such
references were used 1.70 times (SD=2.51) for Screen and
1.95 times (SD= 2.3) for VR.

What changed most drastically between the conditions was
people’s use of pointing gestures. While pointing contributed
to only about 10% to commands in the Baseline condition, this
number increased to about 30% in the Screen condition and
50% in the VR condition (Fig. 7f, Fig. 8). This increase was
statistically significant, as was the difference between the two
conditions. We believe that the head movement based cursor
pointing was particularly compelling since participants were
already moving their heads and seeing potential targets get
highlighted when they are pointed at. Although the difference
was not significant, participants appeared to have used pointing
more even after the visualizations were removed (P2) in the
Screen and VR conditions, compared to he Baseline (Fig. 7f,
P2). Consistent with these findings, participants reported that



(a) (b)

p=0.021 p= 0.025 p=0.014

(c)

p=0.015

(d) (e)

p=0.036

Fig. 9: Analysis of questionnaire responses about (a) how much inputs contributed to commands; (b) how much different outputs and
(c) particularly, different visual interface elements contributed to the user’s performance and mental model; (d) participant agreements with
statements related to their mental models (see Sec. VI-D) and (e) contribution of visualizations to their mental models. Significant differences
indicated with p values for paired Wilcoxon signed-rank tests. Error bars indicate standard error.

pointing contributed more to their commands (Fig. 9a). The
use of pointing in VR condition may have impacted the user’s
input language. As seen in Fig. 7e, language contributed less to
people’s commands in the VR condition compared to the other
conditions, but this difference was not statistically significant.
Mental models with visual transparency. We observed some
differences in people’s mental models between the baseline
and experimental conditions. For example people became more
aware that the robot could interpret their pointing gestures
fairly well when introduced to the visualization. The flaws in
people’s mental models and the changes that occurred after
switching to a visual transparency were captured well by free
form questions in the questionnaire:

“... I learned the way that the system sees my pointing. I found
it was accurate on the right side of the room but it was difficult
[..] on the left side of the room..”

“Based on my observation from this round, I see that [the
robot] has a much richer perception of the environment around
her, and is probably much less controlled by a human during
the experiment than I had initially thought.”

“... understood in this round what went wrong when [it] did not
understand me: for instance, mis-translating ‘dust’ as ‘does’
and thereby not recognizing the action word in the command.”

Despite these differences, participants did not have different
levels of agreement with statements regarding how well the
robot could see the scene and the user’s pointing and hear the
user’s utterances (Fig. 9d). Similarly their self assessment of
the mental model accuracy was not different across conditions
and was very high (Fig. 9d, Self). Furthermore, participants
did not think that natural transparency mechanisms contributed
less to their understanding of what the robot understood from
their commands (Fig. 9b). They rated the contribution of the
robot’s speech particularly high. Among the different visual
interface elements, participants did not favor any particular
one and they did not have a different opinion across the Screen
and VR conditions (Fig. 9c), except for the contribution of the
inference visualization.
Subjective preferences. In the forced ranking questions, 11/20
chose Screen as their most preferred, 8/20 chose the baseline,
and 1/20 chose VR. Participants who chose the baseline

appeared to take less advantage of the visualizations (e.g., use
unique IDs for targets or point with the help of the visualized
cursors). This indicates a polarization among participants.
Indeed, although most participants preferred Screen over VR,
10/20 indicated the baseline as their least preferred interface.

VIII. DISCUSSION

Our study involved a particular implementation of visual
transparency for LUCIT; however, several of the visualization
techniques used in our work are applicable to other perceptual
and inference systems on robots. That includes: renderings
and annotations of geometrical sensor steams or snapshots
(e.g., images and pointclouds); cursors and highlighting for
pointing devices; unique naming of task-related entities; text
representations of raw speech input and inferred command.

LUCIT has several technical limitations, such as the lack
of context-independent object recognition or use of simple
keyword spotting. While upgrading the system in these as-
pects (e.g., using a statistical language model) would improve
its scalability, it would potentially introduce more errors.
Nonetheless, our transparency mechanisms would still be
applicable and would likely provide more benefits.

IX. CONCLUSION

We described LUCIT: a system that interprets a visual
scene and a user’s speech and pointing to infer their task
commands. We characterized the capabilities of LUCIT with
data from 5 participants. Then, through a user study with 20
participants, we investigated the effect of adding visualization-
based transparency mechanisms to this system. We concluded
that visualizations can help communication, especially the
use of pointing gestures, and change people’s mental models
of the robot’s capabilities. Visualizations are more effective
and preferable when displayed on a screen than when they
are immersive; but some people still prefer only human-like
transparency mechanisms.
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