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Abstract— When surveyed, potential users often report clean-
ing as a desired robot capability. Cleaning tasks, such as dust-
ing, wiping, or scrubbing, involve applying a tool on a surface.
A general-purpose robotic solution to household cleaning needs
to address manipulation of the numerous cleaning tools made
for different purposes. Finding a universal solution to this
manipulation problem is extremely challenging and it is not
feasible for developers to pre-program the robot to use every
possible tool. Instead, our work seeks to allow end users to
program robots by demonstration using their own specific tools.
We propose a method to extract a compact representation of a
cleaning action from a single demonstration, such that the tool
can be applied on different surfaces. The method exploits key
insights about tool directionality and constraints placed on the
provided demonstration. We demonstrate that our method is
able to reliably learn cleaning actions for six different tools
and apply those actions on different testing surfaces, even
ones smaller than the training surface. Our method reproduces
the cleaning performance of the demonstrated trajectory when
applied on the training surface and it captures different user
preferences.

I. INTRODUCTION

General-purpose robots have the potential to perform a
diverse range of useful tasks in home environments. Surveys
and interviews with potential users of such robots have
consistently demonstrated that cleaning is one of the most
desired robotic capabilities [21], [6], [15], [17], [1], [6].
Successful solutions to robotic cleaning have so far been
special-purpose robots designed for a particular cleaning
task, such as vacuuming or mopping robots. Instead, we aim
to make general-purpose manipulators use human tools to
perform many different types of cleaning tasks (e.g. dusting,
wiping, scrubbing, sweeping, mopping).

The key challenge in this problem is to program a robot to
be able to use different tools in different environments based
on different users’ preferences. Achieving this with a pre-
defined universal controller or planner is extremely difficult.
Instead, we propose using Learning from Demonstration [5],
[4] to enable the end user to teach a robot how to use
new tools with a desired pattern simply by demonstrating it.
While many existing LfD techniques encode robot motion
[19], [9], [2], they are not well-suited for cleaning tasks, as
they do not encode surface-relativeness. This impedes their
ability to generalize to different surfaces. Furthermore, most
techniques do not make assumptions about repetitive patterns
in the demonstration and hence do not exploit this property
of cleaning actions for compactness.
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Fig. 1. We present a method for extracting a compact representation of tool
use actions from a single demonstration, such that they can be reproduced
on any surface. The figure shows a user demonstrating tool use trajectories
and the robot reproducing the trajectory using the learned model for two
different tools used in our evaluation (Tool 1 and 6).

In this paper we present an intuitive and compact represen-
tation of cleaning actions, which allows the robot to apply the
tool on a new surface. We exploit three key observations: (1)
most cleaning actions can be represented as motions of the
tool relative to a surface, (2) contact with the surface during
the motion often constrains the motion to a 2D manifold
during application, and (3) the tool may further constrain
the types of motions that can be done (e.g. a squeegee
can only be pulled in one direction while in contact with
the surface). We present methods for extracting the tool
application pattern from a single tool use demonstration
and reconstructing a tool application trajectory for applying
the tool on a new surface. We evaluate our methods with
six different tools, demonstrating that they can generalize to
different surfaces and reproduce the cleaning performance of
the original demonstration.

II. RELATED WORK
Learning from Demonstration (LfD) (also known as Pro-

gramming by Demonstration), has been an active area of
research for three decades [5], [4]. While early research ex-
plored various representations for encoding and reproducing
robot manipulator motions [19], [9], [2], recent work has ad-
dressed challenges in manipulating objects [20], [3], learning
high-level task structures [16], [24], and learning from non-
expert demonstrators [8], [26]. Although existing techniques
could be used for grasping and applying a cleaning tool on
a specific surface, none of them directly allow a robot to
correctly apply the learned action on a different surface with
practical tools.

In a few instances, LfD has been applied to cleaning tasks
with different assumptions. For instance, Hess et al. assume
that the robot has a predefined wiping action and learns
to optimally plan a trajectory using this action for wiping



surfaces with various obstacles [13]. Eppner et al. represent
actions as a policy, modeled as a Dynamic Bayesian Net-
work, that moves the robot’s arm relative to landmarks in
the environment at each time step, allowing it to replicate a
demonstrated whiteboard cleaning motion on different sized
boards [11]. In contrast to this approach of representing
cleaning movements as a local policy, we explicitly represent
temporally extended cleaning trajectories. Urbanek et al. rep-
resented wiping movements with cyclic movement primitives
that are learned from demonstration [25]. Different from this
work, our work does not make a model assumption about
cleaning patterns, but is rather data driven. In addition, the
cleaning pattern is not demonstrated in isolation, but rather
extracted from a complete cleaning demonstration.

Other work on robotic cleaning has typically been focused
on special-purpose robots such as the iRobot’s Roomba
(vacuum), Braava (floor mopping), Scooba (floor scrubbing).
For example, researchers have investigated user interfaces for
commanding and programming such robots [18]. Manipula-
tion work on robotic tool-use with general-purpose robots
has been sparse, typically involving manual controller design
[10] or path planning with pre-specified application proce-
dures [12]. Most of these focus on non-cleaning tools, such
as screwdrivers or utensils, that do not involve application on
a surface [22], [14]. Our recent work introduced a low-cost
tool attachment that allows robust and stable manipulation
of human tools [27].

III. APPROACH
A. Overview

The input to our method is a single demonstration of
cleaning a known surface. We first determine the parts of the
demonstration that involves contact with the surface, identify
the directionality of the tool, and then extract the minimal
motion pattern and reproduction parameters. These are used
to synthesize a cleaning motion given a new surface.

B. Assumptions
We make several realistic assumptions. First, we assume

that the robot has a rigid grasp on the tool, i.e. the tool
itself is the robot’s end-effector. For this we use tools that
are modified with a gripper-friendly attachment, called a
griple, [27], shown in Fig. 2. The attachments also allow the
robot to uniquely identify the tool. We assume that the target
cleaning surface is flat, rectangular, and horizontal. Finally,
we assume that demonstrations cover the whole surface with
axis-parallel repetition strokes. These assumptions are made
primarily for simplicity. Our methods could be extended in
various ways to remove these assumptions, as discussed in
Sec. V. In addition, our method can reliably detect when
the assumptions are not met. This allows our system to
proactively enforce the assumed conditions, for instance, by
rejecting the user’s demonstration.

C. Basic concepts
A demonstration consists of a time series of 6-dimensional

end-effector configurations relative to a surface. Such demon-
strations can be provided kinesthetically, i.e. by physically
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Fig. 2. Six tools used in our evaluation.

moving the robot’s arm. The demonstrated trajectory is
relative to a horizontal, rectangular, flat training surface
specified by a height, dimensions, and origin.

The critical parts of a demonstration are those during
which the tool is in contact with the surface. We refer to
these as the contact points. Demonstrations typically do
not involve constant contact with the surface. Instead, the
demonstrator achieves full coverage over the surface using
multiple repetitions between which contact with the surface
is broken. The direction in which the tool moves to establish
or break contact is referred to as the contact direction.
This is simply the direction perpendicular to the surface.
We refer to the direction in which the tool makes progress
during continuous contact with the surface as the application
direction. Finally, the direction in which the tool is shifted
between repetitions is the repetition direction.

The three directions can be explained with the analogous
tasks of writing on paper with a pen. In this example, the
contact direction is the direction perpendicular to the surface
of the page. The application direction is the direction in
which characters are added without loosing contact with
the page (i.e. right to left). The repetition direction is the
direction in which a shift occurs when moving to a new line
(e.g. top to bottom).

Most tools maintain contact or remain within close vicin-
ity of the surface during application. This constrains their
motion to a 2 dimensional manifold. There are two types of
tools depending on whether the motion of the tool is further
constrained.

• Uni-directional tools that only move in one direction
due to the tool geometry, e.g. sweeper, squeegee, or lint
remover (Tools 1, 2, 3, see Fig. 2).

• Omni-directional tools that can freely move over the 2D
surface, e.g. duster, sponge, or scrubber (Tools 4, 5, 6).

D. Repetition detection and direction assignment

Our method aims to extract the minimal cleaning pattern
that will allow a reconstruction of the demonstration. This
needs to be extracted from parts of the demonstration when
the tool is in contact with the surface. Contact points within
demonstration are determined by analyzing the contact di-
rection, in our case the vertical axis (z). We first find the



Fig. 3. Sample demonstrations for the six tools used in our evaluation
with contact (C), application (A), and repetition (R) directions indicated.

distinct peaks within the demonstration where the tool was
lifted off the surface. The peaks segment the demonstration
into parts, or repetitions, each of which involve at most one
continuous application. Within each segment, we filter out
the entry and exit motions by thresholding the slope over
a sliding window in the contact direction. The remaining
parts consist purely of contact points during which the tool
is being applied (Fig. 4).

The next step is to determine the repetition and application
directions. To that end, we examine the slope of a line fit to
the points of a continuous application segment. This slope
should be positive in the application direction, as the tool is
traversing the surface in this direction within one repetition.
In contrast, the slope should be close to zero in the repetition
direction, since the tool motion is axis-parallel. Hence, these
slopes provide a clear indication of the direction assignments
to the x and y axes: the direction with the larger absolute
slope is considered as the application direction. The plots in
Fig. 4 illustrate individual repetitions from demonstrations of
two different tools. For Tool 1, the y axis is the application
direction. The plot of values in the y direction has a much
greater absolute slope than that of the x direction. The x
direction is therefore the repetition direction.

E. Cleaning pattern extraction

A good cleaning pattern is one that when replicated gives a
trajectory that is representative of the original demonstration
and also effectively cleans the surface. The cleaning pattern
is extracted from the application points of the demonstra-
tion. The set of application points has been segmented into
individual repetitions as described in Sec. III-D. To select
a good pattern, we filter out repetitions that (i) significantly
deviate from the median in the contact direction and (ii) that
are significantly longer than the median repetition length.

Algorithm 1 Finding the Cleaning Pattern (CP)
1: procedure FINDCP(repetitions)
2: for each repetition do
3: CPs← detectPeaks(repetition).
4: if length(CPs) > 0 then . 1

5: for each CP do
6: if reject(CP ) then
7: CPs.remove(CP )

8: else . 2

9: CPs← repetition
10: if length(CPs) > threshold then
11: CPs.truncate(threshold)

12: CPs← removeOutliers(CPs)
13: BestCP ← min(diff(CPs))

return BestCP

Algorithm 2 Rejecting Incorrect Cleaning Patterns
procedure REJECT(CP )

2: a← applicationV alue(CP.start)
b← applicationV alue(CP.end)

4: if isIncreasing(applicationSlope) then
if a > b then

6: return True
else

8: return False
else if isDecreasing(applicationSlope) then

10: if a < b then
return True

12: else
return False

The cleaning pattern is chosen from the middle part of one
of the remaining repetitions. This avoids variations in the tool
orientation that occur at the beginning and end portions of
a repetition. To determine the cleaning pattern, we first find
peaks in the repetition direction. These represent changes in
direction perpendicular to the application direction, often due
to a cyclic movement. If movement in the repetition direction
is below a certain threshold, the tool is classified as a uni-
directional tool. In that case, the cleaning pattern is chosen
as a fixed offset portion of the repetition, taken from the
middle of the repetition.

For omni-directional tools, to remain parallel to the axis in
the application direction, the cleaning pattern should start and
end at the similar values. We identify such patterns by com-
paring consecutive peaks in the repetition direction. For each
candidate pattern, we then check the difference in between
the start and the end in the application direction. Since the
tool should move in the application direction this difference
should have a non-zero absolute value. Among the candidates
that satisfy these criteria, we reject outliers whose variance
in the repetition and application directions differ significantly
from the mean. This allows us to pick a cleaning pattern that
is more representative of the demonstrated trajectory. After
outlier rejection, we select the cleaning pattern that has the
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Fig. 4. Result of repetition and cleaning pattern detection on sample
demonstrations for two tools.

smallest offset between its start and end in the repetition
direction. The process of extracting cleaning patterns from
demonstrations is illustrated in Fig. 4 for two tools (uni-
directional and omni-directional).

F. Applying cleaning actions

Next we describe how a cleaning pattern is used to
synthesize a cleaning trajectory for a new test surface. The
first step is to determine the number of times the robot
will need to repeat the cleaning pattern within a single
repetition in order to obtain full coverage of the surface.
This is computed based on the ratio of the length of the
cleaning pattern in the application direction and the length
of the surface in the application direction. We also need to
determine the number of repetitions. We assume that the
ratio between the number of repetitions in the generated
and original motions, should be the same as the ratio of
the lengths of the original and new surfaces in the repetition
direction.

The target trajectory is synthesized simply by concatenat-
ing the cleaning pattern based on the determined repetition
numbers. At the beginning and end of each repetition we
add points at a certain height above the surface so that
the robot lifts the tool off the surface between repetitions.
Although there are no constraints on how the application
and repetition directions are assigned to the new surface,
we chose to transfer the conventions of the demonstration.
Similarly, the starting corner is chosen to be similar to the
demonstration.

G. Implementation

1) Platform: Our method was implemented on a PR2
(Personal Robot 2) mobile manipulator. We only used one
of PR2’s 7 degree of freedom (DoF) arms, which is pas-
sively balanced through a spring counterbalance system. This
provides safe and effortless gravity-compensation, which is
ideal for kinesthetically demonstrating trajectories. The arm
can carry or apply force up to 2.2kg. The arm has a 1-DoF
under-actuated gripper.
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Fig. 5. Sample patterns detected for each tool. Tools 1 - 3 are directional.
Tools 4 - 6 are omnidirectional.

2) Software: Our software is developed within ROS
(Robot Operating System) and builds upon PR2 Program-
ming by Demonstration [7]. All new algorithms are written
in Python and use Numpy’s signal library. During kinesthetic
demonstrations users wear a Shure microphone headset to
give simple speech commands to the robot. The tools are
identified through fiducials attached on their griple (Fig. 2).
Similarly the training and test surfaces are marked by four
fiducials at the four corners. We use Alvar Augmented
Reality (AR) tag tracking [23] to detect and localize the
fiducials with the Kinect sensor on PR2’s pan-tilt head. We
rely on the robot’s default arm navigation software to execute
original and synthesized trajectories.

IV. EVALUATION
Next we present an evaluation of our method on the PR2

robot, with the six different tools shown in Fig. 2.

A. Data
We collected a full set of demonstrations for all tools,

from three different users (authors of the paper). Demon-
strations were collected with the following procedure. First
the user hands a tool to the robot’s right gripper. The griple
attachment on the tool allows the robot to grasp the tool
consistently at the same position and rotation. Then the robot
moves the tool near its camera to detect the fiducial that
identifies the tool. Next the robot looks down at the table to
detect four fiducials that define the table surface. The robot
then moves its right arm to a fixed start pose. When the user
says “start recording” the robot relaxes its right arm so the
user can demonstrate the cleaning trajectory. When the user
says “stop recording” the robot stiffens the arm and moves
it back to the fixed pose. During demonstrations the users
only held the robots arm and gripper and did not touch the
tools. Users were allowed to overwrite their demonstration
until they were pleased with it.

We demonstrate the outcomes of our method with exam-
ples from this data. One full set of demonstrations is shown
in Fig. 3. We observe a variety in the patterns, number of
repetitions and overlap among repetitions, and the choice
of application and repetition directions, across the different
tools.

B. Analysis of learning system
Fig. 4 shows the outcomes of the repetition segmentation,

repetition/application direction assignment, and cleaning pat-
tern extraction for two tools from a single demonstrator. A
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Fig. 6. Different patterns detected from the three different demonstrations
for two of the tools.

complete set of patterns is shown in Fig. 5. These nicely
capture the differences between the two types of tools and
the individual tools. The cleaning patterns of the first three
tools are similar. These are all unidirectional tools and their
motion is restricted to a straight line. All three sample
patterns have the y-axis as the application direction, as the
robot’s arm allows a greater and smooth movement in this
direction. A larger variation of cleaning patterns are observed
for omnidirectional tools. While the last two tools have
oscillating patterns, the pattern for Tool 4 (duster) resembles
the unidirectional tools as it was effectively used like a
sweeper in this particular demonstration.

The difference between users is also captured by our
method. Fig. 6 shows the different patterns for all three
users on two different tools. We observe that individual user
differences are particularly captured for the omni-directional
tools, since the uni-directional restricts the tools movement.
For omnidirectional tools we observe both spiral (user 1 and
3) and zigzag (user 2) patterns and we observe different
choices of application and repetition directions.

C. Analysis of trajectory generation

Next we examine the performance of our trajectory
synthesis method that uses the learned cleaning patterns.
Fig. 7 compares the original demonstration with the trajec-
tory generated for the same table as the one used during
demonstration. We see that the detected cleaning patterns are
meaningful and the synthesis creates a reasonable replication
of the trajectory. The generated trajectory correctly covers the
region spanned by the original demonstration for all 6 tools.

Fig. 8 shows the trajectories synthesized for three differ-
ent surfaces. This demonstrates that the synthesis method
naturally generalizes to different sized surfaces. The ability
to use the same pattern on smaller surfaces is particularly
interesting. Although we only considered flat and square
surfaces, the small-grained granularity of the cleaning pattern
representation makes it applicable to surfaces with different
shapes or surfaces that have obstacles on them. In addition,
together with perception of the table dirt state, this allows
the robot to adaptively clean dirty parts of the table using
an appropriately sized patch composed with the cleaning
pattern.

D. Evaluation in cleaning tasks

Finally we evaluate the cleaning performance of our
method with all six of the cleaning tools. For each type
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Fig. 7. (Top) 3D rendering of the demonstrated trajectory (blue) and the
reconstructed trajectory (pink) and (Bottom) overlay of the two trajectories
from the top down view for six tools used in our evaluation.

of tool we devise a different cleaning test. For Tools 1-4
(sweeper, squeegee, lint remover, duster), we layout paper
cuts on a 10 by 10 grid over the training surface. The goal of
the task is to remove all the paper cuts. For Tools 5-6 (sponge
and scrubber), we use a white board on which a permanent
10” by 10” grid has been drawn. We color the grid with a
non-permanent marker and we measure the robot’s ability to
remove the marker.

Fig. 9 shows before and after snapshots from the cleaning
tests, comparing the original trajectory and the synthesized
one. We observe that our method is able to produce tra-
jectories that are overall on par with the demonstrated
behavior. The original and generated trajectories have similar
performances, but this performance is not always good.
For example, tool 3 (lint remover) did not do well on
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Fig. 8. Reconstructed trajectories for different target surfaces for Tool 1
and 6. Target surface is shown in grey with relative size of surface used for
demonstration shown in green.

the cleaning test with either trajectory, mainly due to the
task-tool mismatch. In some cases the generated trajectory
surpasses the original trajectory as with tools 2 and 4. Only
tool 5 had a generated trajectory that was not as good as the
demonstrated one.

V. DISCUSSION

As validated in our experiments, the proposed method
can reliably use the reconstructed cleaning trajectory to
clean different surfaces. The cleaning results from the PR2
executing the generated trajectory are comparable with those
demonstrated by the users. Although our methods make
several assumptions (see Sec. III-B), we believe that these as-
sumptions could be removed with straightforward extensions.
For example our methods assumed axis parallel repetitions.
If this was not the case, we could detect the axis along
which the tool is moving during an application through a
principle component analysis (PCA) on the demonstration
data. Similarly, rather than assuming z to be the contact
direction, our methods could be extended with contact direc-
tion detection. This would allow the robot to clean surfaces
with arbitrary orientations. With detailed surface information
from the Kinect sensor, it would even be possible to adapt
the application direction of the reconstructed trajectories
according to surface normals, to obtain cleaning patterns on
arbitrarily shaped and curved surfaces.

Our method makes assumptions about the way that demon-
strations are provided. While these assumptions were based
on observations from experiments with naive users, we can-
not guarantee that all users will naturally follow the required

Fig. 9. Results from cleaning tests with Tools 1 - 6.

constraints. We would like to conduct a user study to further
investigate how people clean surfaces using different tools,
as well as, how they naturally demonstrate it with the robot’s
arms when they are not told about the constraints. Nonethe-
less, our method can reliably detect when the constraints are
not met. For example, our method rejects candidate cleaning
patterns when their variance in the repetition and application
directions differ significantly from the mean. This can mean
that for variance demonstrations, no suitable patterns are
found. Our method can easily detect when this is the case and
prompt the user for additional demonstrations. This would
allow us to develop an interactive demonstration procedure
where the robot would instruct users and would reject a
demonstration if it does not satisfy necessary constraints.

Our method currently plans for trajectories that only use
arm movement. When the target surface gets significantly
bigger than the training surface (e.g. tables, walls) the gen-
erated trajectories will obviously exceed the kinematic limits
of the robot’s arm. Taking the mobile base into consideration
for trajectory planning can address this problem. In addition,
by using both arms, the robot can increase its range and get
objects on the target surface out of the way with one arm to
clean below it with the other arm.



VI. CONCLUSION
We present a method for extracting cleaning patterns

from a single cleaning demonstration on a known training
surface. The patterns are then used for reproducing the action
on a new testing surface. We evaluate our methods with
demonstrations provided by three users for six tools. We
demonstrate that such patterns allow generating cleaning
trajectories on different surfaces, even ones that are smaller
than the training surface. We also demonstrate that the
reproduced trajectories provide cleaning performance on par
with the demonstrated trajectory which indicated that our
compact representation successfully captures the important
information about how the tool is used.
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