Computer Science Outreach with
End-User Robot-Programming Tools

Vivek Paramasivam, Justin Huang, Sarah Elliott and Maya Cakmak
Computer Science & Engineering, University of Washington
185 Stevens Way, Seattle, WA 98195
{paramv,sksellio,jstn,mcakmak}@cs.washington.edu

ABSTRACT

Robots are becoming popular in Computer Science outreach
to K-12 students. Easy-to-program toy robots already exist
as commercial educational products. These toys take ad-
vantage of the increased interest and engagement resulting
from the ability to write code that makes a robot physically
move. However, toy robots do not demonstrate the potential
of robots to carry out useful everyday tasks. On the other
hand, functional robots are often difficult to program even
for professional software developers or roboticists. In this
work, we apply end-user programming tools for functional
robots to the Computer Science outreach context. This ex-
perience report describes two offerings of a week-long intro-
ductory workshop in which students with various disabilities
learned to program a Clearpath Turtlebot, capable of deliv-
ering items, interacting with people via touchscreen, and
autonomously navigating its environment. We found that
the robot and the end-user programming tool that we devel-
oped in previous work were successful in provoking interest
in Computer Science among both groups of students and in
establishing confidence among students that programming
is both accessible and interesting. We present key observa-
tions from the workshops, lessons learned, and suggestions
for readers interested in employing a similar approach.

CCS Concepts

eSocial and professional topics — K-12 education;

Keywords
Robotics; Accessibility; End-User Programming; Outreach

1. INTRODUCTION

Robots are becoming popular tools for Computer Science
(CS) outreach efforts that introduce programing to K-12 stu-
dents [2, [6] [13], 14}, I5]. The goal of these outreach activities
is to demonstrate the allure of computing and engineering
disciplines, taking advantage of the immediate engagement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGCSE ’17, March 08 - 11, 2017, Seattle, WA, USA

Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4698-6/17/03... $15.00

DO http://dx.doi.org/10.1145/3017680.3017796

;N

Figure 1: Chester, a waiter robot programmed by stu-
dents at the 2015 Robot Programming Workshop, (a) escorts
guests, (b) takes orders, and (c) delivers orders at “Cyber
Cafe”. Robots programmed by individual students at the
2016 workshop include (d) a cleaning robot (FRED), (e) a
medication reminder/delivery robot (Ultravax), (f) a lan-
guage tutor robot that names objects in the room (Leerer),
(g) a math tutor robot (Khan), (h) a pet robot that talks
about sports (Sport), and (i) a dog walking robot (Walker).

that robots offer. As with many CS outreach activities, it
is important that the interface used for programming has
a low barrier to entry. The simple toy robots used in pre-
vious outreach efforts have highly simplified, easy-to-learn
interfaces, often based on visual programming

The necessity of a simple interface tends to preclude the
use of more advanced functional robots in K-12 outreach
curricula, since these kinds of robots require a significant
amount of background knowledge and skill to program. For
example, programming a Clearpath Turtlebot (Fig. re-
quires relatively advanced knowledge of Python or C++

'Examples of educational toy robots include the Tymio
(https://www.thymio.org/) and Dash&Dot (https://www.
makewonder.com/).

http://dx.doi.org/10.1145/3017680.3017796
https://www.thymio.org/
https://www.makewonder.com/
https://www.makewonder.com/

languages and familiarity with ROS (Robot Operating Sys-
tem)ﬂ However, in contrast to toy robots, the Turtlebot
can deliver items, interact with people on a touchscreen,
and autonomously navigate its environment. Involving such
robots in CS outreach, especially when targeting students
with disabilities, can better convey how programming skills
can enable them to tackle everyday problems.

In this work we propose to use end-user programming
(EUP) tools [9], to enable CS outreach with human-scale,
functional robots. EUP is an active research area that aims
to enable users with limited technical knowledge to create
software that accomplishes desired tasks. This experience
report describes two offerings of a week-long introductory
workshop in which high-school students with various disabil-
ities learned to program a Clearpath Turtlebot using EUP
tools for programming robots developed in our prior work
[5] We found that the robot and the EUP tool were effective
in allowing novice programmers to bring their ideas to life,
garnering their interest in CS, and establishing confidence
about their ability to pursue CS. We present key observa-
tions from the workshops, lessons learned, and suggestions
for readers interested in employing a similar approach.

2. RELATED WORK

Robots in Computer Science Education. The effective-
ness of robots in CS education is well documented. Robots
with easy-to-use programming interfaces, such as LEGO
Mindstormsﬂ have been shown to be effective in develop-
ing programming skills as well as in fostering interest in CS
[8, 13] and in neighboring STEM fields such as mathematics
and physical sciences [10]. Middle and high school students
mentored by college students in a robotics-based introduc-
tory CS course at Brooklyn College were observed to switch
career paths to pursue CS [I3]. Virtual robots have also
been employed as part of Hour of Cod@ exercises.

One study demonstrated the effectiveness of robotics in

promoting gender diversity in CS education and technol-
ogy literacy programs through a “strong social narrative”
[3]. Their study provided a customizable robot that ex-
pressed emotions designed by its creator using light, sound,
and movement. Similarly, our work builds on the idea that
personalization and individual creativity can help engage the
interest of students in programming tasks.
End-user Programming. End-User Programming (EUP)
is an active research area in human-computer interaction
that aims to enable everyday people, who are not profes-
sional software developers, to create custom programs that
meet their particular needs [7, [9]. The most popular exam-
ples of EUP are spreadsheets [12] and webpage development
[16]. In their 2006 book, End User Development, Leiberman
et al. stress that EUP systems must be “easy to understand,
to learn, to use, and to teach” [9]. These values are very rel-
evant to CS outreach tools as well.

One end-user programming technique that has been adopted

in robotics is visual programming [Il, [IT], in which users cre-
ate and modify programs by manipulating visual represen-
tations of program components. These systems generally
involve simple toy robots [2] [6] [14] [I5] that allow program-
ming at a low-level where individual sensory inputs can be

2http: //www.ros.org/
3http://www.lego.com/en-us/mindstorms
“https://hourofcode.com/us/learn/robotics

& BACK TO PROGRAM LIST

Demo Restaurant Program

Ask a questior
order = robot.askMultipleChoice(

"Wwhat would you like to order?",
["Hamburger", "Lasagna", "Salad"]);

te to 1tchen
robot.goto("kitchen");

Place the orde at the kitchen
()'obot,say(“Thc customer ordered " + String(order));
a

What would you like to order?

Hamburger Lasagna Salad

) i ©
Figure 2: (a) The browser-based Codelt interface showing a
sample program, (b) the robot’s screen during the operation
of the sample program, (c) the Turtlebot.

tied directly to actuators. In our previous work, we devel-
oped visual programming tools for functional mobile delivery
robots [5] and manipulators [4].

3. ACCESSIBLE ROBOT PROGRAMMING

Next, we describe the robot platform and EUP tool used
in our robot programming workshops.

3.1 Robot Platform

The Clearpath TurtlebotEl is a cylindrical robot that uses
a differential drive for motion and a Microsoft Kinect to
perceive its environment. The Turtlebot is modular and
easy to reconfigure with different height platforms and other
components. We allowed students to specify minor hardware
modifications to the robot, such as adding a basket, box,
brush, or other tool onto the robot. Our Turtlebots held
tablets which served to display information and receive input
in the form of button presses. In addition, they are capable
of speech input and output.

Given a map of its environment, the Turtlebot can localize
itself and navigate between any two points on the map while
avoiding obstacles using a non-deterministic path planning
algorithm. Locations on a map can be given names for easy
referencing. Prior to the workshop, we used the Turtlebot’s
navigation tools to create a map of the room and define
names for useful locations, such as “Door” and “Table.”

3.2 Codelt

In our workshops, we used an EUP tool called Codelt for
programming the Turtlebot. Codelt was originally devel-
oped to enable programming of a mobile robot to perform
delivery and social interaction tasks [5]. It was later ex-
tended and integrated with other tools to enable program-
ming of mobile manipulators [4]. Both of these versions of
Codelt have a drag and drop interface based on Google’s
Blocklyﬂ To increase accessibility for students with im-
paired motor skills and low vision, the versions of Codelt

Shttps://www.clearpathrobotics.com/
turtlebot-2-open-source-robot/
“https://developers.google.com/blockly/

http://www.lego.com/en-us/mindstorms
https://hourofcode.com/us/ learn/robotics
https://www.clearpathrobotics.com/turtlebot-2-open-source-robot/
https://www.clearpathrobotics.com/turtlebot-2-open-source-robot/
https://developers.google.com/blockly/

used in our workshops involved a text based interface, rather
than a visual one.

The version of Codelt used in the first run of the workshop
(July 2015) used a Python interface and the second one (July
2016) used a JavaScript interface. Both interfaces presented
the following functions, with minor differences in API.

e goTo(location): Navigates robot to the named loca-
tion, avoiding obstacles.

e say(text): Uses voice synthesizer to say the passed-in
text out loud.

e displayMessage(message): Displays the passed-in mes-

sage on the screen.

e askMultipleChoice(message, choices, timeout): Dis-

plays the passed-in message and choices on the screen for
up to timeout seconds. Returns the choice selected.

¢ moveForward(speed), moveBack(speed): Moves the
robot forward or backward at the specified speed (m/s)
for one second.

e turnLeft(speed), turnRight(speed): Turns the robot
left or right for one second at the specified rate (rad/sec).

3.3 Accessibility

Accessibility and ease-of-use of programming tools is of
vital importance to new programmers, and doubly so for
students with disabilities. Implementing our interfaces as
browser-based web applications allowed students to program
on their own laptop computers and ensured they could use
their usual accessibility tools such as screen-readers, spe-
cial fonts, and zoom. This also allowed students to write
programs without installing special software, independent
of operating system.

During the 2015 workshop, we had the students edit code
directly on Github, and notify an instructor when they wanted
to have the code tested on the robot. The instructor would
then pull the code onto the robot and execute it. The 2015
system was functional, but the workflow was slow. In 2016,
we developed a web interface that allowed users to create,
save, and execute Codelt programs directly from a browser.
This greatly expedited the development process.

4. ROBOT PROGRAMMING WORKSHOP

The robot programming workshop was offered as part of
the DO-IT scholars summer program in July 2015 and 2016E]
Both workshops took place over five days, three hours each
day, for a total of fifteen hours of instruction. The 2015
workshop had five students, while the 2016 workshop had
six. In 2015, all students worked together to program a
single robot functionality. In 2016, each student developed
their own program. Both years, students presented their
programs to the entire group at the end. The DO-IT schol-
ars summer program engages students disabilities from the
Seattle area with the goal of encouraging them to go to col-
lege and facilitating their transition. Besides topical work-
shops like our workshop, the summer program includes ac-
tivities such as self-advocacy skill building or field trips to
local tech companies.

The primary goal of the robot programming workshop was
to interest the students in CS as a field and to develop their
confidence that programming is a fun and accessible activity.

"http://www.washington.edu/doit /programs/do-it-
scholars/overview

Figure 3: 2016 Codelt JavaScript Sample

// Portion of 2016 Sample Code

// go to table_southeast
robot.goTo("table_southeast");

// other places: door, home, trash, couch

// display message
robot.displayMessage("Hello!",

"My Name is
LoggerHead.");

// say message
robot.say("Hello, my name is Loggerhead.");

// wait for two seconds
waitForDuration(2);

// say message
robot.say("What’s your favorite color?");

// Ask a question
item = robot.askMultipleChoice("What’s your
favorite color?", ["Indigo", "Jade"]);

// Display a message by adding two strings
together

robot.displayMessage (String("You Selected ") +
String(item));

// say message
robot.say(String("You Selected ") +
String(item));

The secondary goal of the workshop was to develop intro-
ductory knowledge of CS concepts such as functions, loops,
and parameters.

4.1 Curriculum
The outline of the five-day workshop was as follows.

e Day 1: We introduced basic concepts in robotics. Pairs
of students brainstormed dozens of program ideas for
what to program on the robot and began exploring Codelt.

e Day 2: Students finalized project ideas and began im-
plementation and low-fidelity hardware modifiations.

e Day 3: Students tested and debugged their programs,
and implemented improvements.

e Day 4: Students fixed final bugs and demonstrated their
robots. We conducted interviews with the students.

e Day 5: We demonstrated other robots and performed
activities. We administered a post-workshop survey.

4.2 Teaching the API

Due to the relative simplicity of Codelt, we made the de-
cision to teach the API via sample code. Learning from
our past experience and past work by others [8], we pursued
a style that minimized lecturing and maximized hands-on
time with the robots and code.

On the first day of the workshop, we provided a sample
program which demonstrated the use of the most common
robot functions. We included detailed comments explain-
ing each function’s purpose. A portion of the 2016 Codelt
JavaScript sample code is given in Fig.[3] We asked students
to make a copy of this program, modify it in any way they
would like, and test it on the real robot.

Over the course of the next few days, students learned
the API while developing their program. We introduced
conditional statements to the students when prompted, and
introduced for-loops and while-loops on Day 3 to students
who required them for their programs.

4.3 Participants

Of our eleven students, three were female, and eight were
male. Most were juniors and seniors in Seattle area high
schools. One student had taken AP Computer Science and
participated in FIRST robotics. Two had taken one or two
general computing classes. One had learned HTML/CSS
to create a website. The rest of the students had no prior
programming experience. Qur students had various disabil-
ities or conditions including deafness, low vision or blind-
ness, Cerebral Palsy, Muscular Dystrophy, Ollier’s disease,
Attention Deficit Disorder, Asperger’s Syndrome, and other
autism spectrum disorders or learning disabilities.

4.4 Projects

The 2015 workshop involved collaborative programming.
The five students were split into three teams of two, with
one student working with a teaching assistant. Each of those
teams worked on a small part of a larger program which
played out the scenario of Chester, a robot that serves peo-
ple at a restaurant. The first team worked on greeting and
escort to table, the second team worked on taking customers’
orders and delivering food, and the third team managed the
receipt and payment.

The 2016 workshop involved students working on individ-
ual projects. Two robots were shared between the 6 stu-
dents. The different projects were as follows.

e French Robo Expunging Device (FRED): A clean-
ing robot that dusts tables, cleans whiteboards, and
sweeps objects on the ground.

e Ultravax: A robot with a sassy personality that delivers
medicine to a caretaker at the proper time.

e Larer: A robot that teaches Norwegian by navigating
around a room, translating the names of various objects
it comes across and administering a quiz at the end.

e Khan: A robot that teaches mathematics and adminis-
ters quizzes.

e Sport: A robot that acts as a pet for people who have
allergies and also knows a lot of sports facts.

e Walker: A robot that can take a dog for a walk, for
busy people with pets.

S. DATA, OBSERVATIONS, AND FINDINGS

Throughout both workshops, we took notes of our inter-
actions with students as they worked on their projects and
we recorded video-blog style interviews with each of them
on the last work day of the workshop. In these brief, open-
ended video interviews, we had the students describe their
projects and asked them questions about their work. In ad-
dition, in 2016 we included a post-workshop questionnaire
and received responses from a short interview conducted by
an external supervisor on the last day. Findings based on
the compiled data are presented next.

5.1 Collaborative vs. Individual Programming

In 2016, as students programmed their own robots, we
saw the students engage with the robot more and feel that
it is a more personal project, compared to 2015. Multiple
students referred to the Turtlebot they worked on as “my
robot” instead of “the robot” as compared to 2015, despite
sharing it with two other students. In our post-workshop
survey, a student mentioned that “not everyone wants to do
the same thing,” expressing that they enjoyed being able to

Figure 4: 2016 Post-Workshop Survey Questions

1. Before participating in this workshop, what experience did
you have with computer science or robotics, if any?

2. What parts of the workshop did you like the best? Why?

3. What parts of the workshop could use improvement?

4. What part of the workshop was most beneficial to your
learning?

5. What part of the workshop was most distracting or hindered
your learning?

6. The Web-based Codelt programming tool was easy to learn.
(1-5]

7. 1 found that Codelt allowed me to easily turn my ideas into
a functional robot. [1-5]

8. I would like to use Codelt to program robots in the future.
[1-5]

develop their own program. This indicates that for some
students unbounded creativity is key to engagement and a
team environment may stifle their inventiveness.

On the other hand, collaborative programming allowed
students to experience teamwork in a CS environment and
delivered a more interesting and intricate robot interaction.
The team effort to develop Chester in 2015 was something
one student could not have accomplished alone in the limited
time-frame of the workshop.

5.2 Post-Workshop Survey

At the end of the 2016 workshop, students filled out an
eight-question survey (Fig. that evaluated the effective-
ness of the workshop. Next, we discuss the most interesting
results of the survey which all six students responded to.

In response to question 2, four out of six students agreed
that the “best” part of the workshop was being able to pro-
gram whatever they wanted on the robots. In question 6,
two students rated the ease of learning as 4/5 and the rest
as 5/5, indicating high levels of satisfaction with how simple
Codelt was to learn. This was an expected result of using
an EUP interface, which is designed to have a low barrier
of entry. One student expanded on their response to this
question by adding that the reason they responded with a 4
was because at times the student needed help understanding
some of the concepts.

In question 7, three students rated the ease of implement-
ing their ideas as 4/5 and three as 5/5. One student men-
tioned that they did not respond with a 5 because of tech-
nical challenges with the infrastructure encountered occa-
sionally during the workshop. These responses demonstrate
the perceived expressivity of Codelt to capture useful tasks.
It also indicates that our introduction of the robot and the
Codelt API correctly communicated the robot’s capabilities.

In response to question 8, three students rated their desire
to use Codelt in the future as 5/5, two as 4/5 and one as
2/5 response. The student who responded with a 2 wrote
that while Codelt is “very easy” to learn, its commands are
not versatile enough for a more complex robot.

5.3 Perception about Programming

Coming in to the workshop, many students held a belief
that programming would be difficult, but ultimately found
it much simpler than they imagined. In a video interview,
a student from the 2015 workshop reflected on her week,
mentioning that at first, the sample code “looked really in-

timidating,” but after working with it for a while, she learned
“how any small change we made to the code affected how the
robot behaved.” This student came back to be a teaching
assistant next year, helping us manage the workshop.

A 2016 student remarked in interactions with instructors
on multiple occasions, “technology doesn’t like me,” express-
ing her discomfort and lack of confidence when working with
computers. However, at the end of the workshop, she men-
tioned in her video interview that learning to program “was
easier than [she] thought it would be,” adding that program-
ming “came easily to [her].” This sentiment was echoed by a
2015 student who remarked in his video interview that dur-
ing the workshop he “grew to understand programming.”

Another 2016 student, who created the Norwegian-teaching
robot Lerer remarked in his video interview that trying
to “communicate your thoughts to the robot was a pretty
big learning experience,” and that “being successful at these
challenging things, like telling it how to move, to teach, ..
was just absolutely fantastic.”

5.4 Engagement with Content

We saw high levels of engagement from students using
Codelt to create complex robot behavior. This did not nec-
essarily involve learning new CS concepts, but rather cre-
ating detailed program content using learned concepts. For
example, in 2015, students spent time adding various food
items to their menu which customers could order from, and
discussed in detail what the robot should say and which di-
rection it should face when it interacts with customers at
the restaurant.

In 2016, one student spent hours adding new vocabulary
words to his Norwegian-teaching robot, testing and iterat-
ing to ensure his robot was pronouncing words properly as it
moved from object to object. The same student worked with
others to develop an entirely separate program meant to
make the robot appear to be possessed by a other-worldly en-
tity, emitting bizarre noises and phrases, and drove it down
the hallway, spooking some of the students in neighboring
labs. Another 2016 student created a caretaker robot that
“has personality.” He said in his video interview that he had
the most fun “getting the robot to be a little sassy.” These
students have progressed past the stage of simply learning
the content and moved on to enjoying it, which is important
to establishing long-term interest.

5.5 Disability in the Background

By allowing students to write code on their own laptops,
we were able to mitigate many accessibility challenges that
would normally be present when teaching robot program-
ming to a group of students with disabilities. Providing al-
ternative input and output modalities on the robot allowed
students to make the robot they programmed as accessible
as possible to the rest of the group. For instance, most stu-
dents in the 2016 workshop displayed status messages on
the robot’s screen while also using text-to-speech to verbal-
ize the same message, such that both low-vision and hard-
of-hearing students could be aware of the robot’s status.
Similarly, in the 2015 workshop the robot programmed by
the students could take food orders both directly from the
screen or with speech input, making it accessible for stu-
dents in wheelchairs with limited reach and dexterity and
students with low-vision.

Given that the workshop was run in the context of the

DO-IT summer program centered around disability, we ex-
pected that participants would program the robot to address
challenges they face due to their disabilities. Instead, par-
ticipants chose to work on developing robots that addressed
general problems (e.g., cleaning, forgetting to take/losing
medications) or problems they faced which are independent
of their disabilities (e.g., studying math). Many explored
their personal interests (e.g., pets, sports, languages).

5.6 Computer Science Concepts

The workshop introduced students to basic CS concepts.
In 2015, students learned variables, conditionals, loops, events,
and arrays, and they learned to write simple functions. In
2016, students learned the same concepts, except for events.

Despite the differences between the two offerings of the
workshop, the kinds of mistakes made by students were sim-
ilar. Most common mistakes were syntactic; such as mis-
matched quotation marks, brackets and braces, and incor-
rect use of the assignment operator (=) instead of the equal-
ity operator (==), among other similar novice programmer
mistakes. Many of these mistakes could be avoided with a
more advanced IDE with autocomplete and error marking.

Other mistakes had more to do with semantics. For ex-
ample, some students in the 2016 workshop wanted to ask a
question to the user and timeout after sixty seconds. They
would write the following:

// Javascript semantic mistake
answer = robot.askMultipleChoice(
"What is your favorite color?" ,
["Indigo", "Jade"]l);
waitForDuration(60);

What the above code actually does is wait indefinitely
until it receives a response to the multiple choice question,
and then waits for sixty seconds no matter the response.
The correct solution takes advantage of the optional final
parameter for the askMultipleChoice function:

// Javascript corrected

answer = robot.askMultipleChoice(
"What is your favorite color?" ,
["Indigo", "Jade"],
60); // final parameter is timeout

Common robot-related errors encountered both years were
bugs that had to be tuned by experimentation, such as de-
termining how much to rotate the robot to face someone in
a particular seat, and how long to wait in between spoken
sentences for natural interaction. For example, the student
who was making the robot speak in Norwegian made several
iterations to achieve the correct phonetic pronunciation.

6. DISCUSSION

Overall, we found that individual programming created
a more personalized and engaging work environment com-
pared to a team programming project. Hence, we recom-
mend this approach. Key resources that made this approach
possible were the small ratio of students to robots (3:1), the
ability to switch between two student’s programs instanta-
neously on the robot, the small ratio of students to instruc-
tors/teaching assistants (1:1), and a large lab space that
allowed stations for testing different robots and recording
video blogs. Although we think the workshop could possi-

bly be scaled so long as these resources are also scaled, we
believe that larger group activities (e.g., discussion about
robot jobs, discussion about feasibility and usefulness of
brainstormed ideas) might not engage all students at the
same level if the group gets too large. We ran this workshop
with twelfth-grade students, but believe that high school
students of all ages, as well as with older middle school stu-
dents, could participate as well.

One way to further scale our workshop is to enable teach-
ers, who do not necessarily have expertise in CS, to run them
in their communities. While we think that the robot plat-
forms are not yet robust enough to enable this, we see poten-
tial for using simulated robots that can be programmed sim-
ilarly. We are currently working on an Hour of Code module
that involves programming a simulated mobile manipulator
robot (as opposed to the simple simulated toy robots pre-
viously used in Hour of Code). In future work, we would
like to better understand the impact of using human-scale
robots for education, as opposed to smaller, toy robots or
virtual agents.

In our workshops we taught the robot API by having stu-
dents edit a simple example program, as shown in Fig.
In our opinion, this worked very well. Due to the simplic-
ity of the API, it was faster to allow students to experiment
with tweaking parameters than to actually perform a lecture
explanation of each function. That being said, as the API
grows, we would need to select a subset of the functionality
to put into a sample program, so as not to overwhelm the
students with information.

7. CONCLUSION

We present an experience report about two offerings of a
robot programming workshop targeted at high-school stu-
dents with disabilities. Our goal was to inspire an interest
in CS among students by enabling them to program a func-
tional mobile robot via an end-user programming interface.
We found that an EUP tool can indeed make an advanced
robotic platform, such as the Turtlebot, accessible to novice
programmers in an educational setting. We think that this
pairing of EUP tools with advanced robots is effective in de-
veloping students’ confidence in their ability to program and
in developing interest in Computer Science through applica-
tions they can relate to. Our workshop allowed students
to program a robot to do useful tasks effortlessly, chang-
ing their potentially false perceptions about the complexity
and difficulty of programming robots. More generally, we
believe that EUP interfaces that are designed to be easy to
learn and require little investment to create something in-
teresting and useful, are ideal when exposing students to CS
without intimidating them.

8. ACKNOWLEDGMENTS

Thanks to the DO-IT center, especially Debra Zawada,
our teaching assistants (DO-IT “interns”), and to our stu-
dents (DO-IT “Phase 2 scholars”). This work was funded by
the National Science Foundation, Awards 11S-1552427 “CA-
REER: End-User Programming of General-Purpose Robots”
and EEC-1444961 “AccessEngineering.”

[1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

M. Burnett. Visual programming. Wiley Encyclopedia
of Electrical and Electronics Engineering, 1999.

P. Cox, C. Risley, and T. Smedley. Toward concrete rep-
resentation in visual languages for robot control. Jour-
nal of Visual Languages & Computing, 9(2):211-239,
1998.

E. Hamner, T. Lauwers, D. Bernstein, I. Nourbakhsh ,
and C. F. DiSalvo. Robot diaries: Broadening partici-
pation in the computer science pipeline through social
technical exploration. In AAAI Spring Symposium on
Using Al to Motivate Greater Participation in Com-
puter Science, March 2008.

J. Huang and M. Cakmak. Code3: A system for end-
to-end programming of mobile manipulator robots for
novices and experts. In ACM/IEEE International Con-
ference on Human Robot Interaction (HRI), 2017.

J. Huang, T. Lau, and M. Cakmak. Design and evalua-
tion of a rapid programming system for service robots.
In ACM/IEEE International Conference on Human
Robot Interaction (HRI), pages 295-302, Piscataway,
NJ, USA, 2016. IEEE Press.

S. Kim and J. Jeon. Programming lego mindstorms nxt
with visual programming. In IEEE International Con-
ference on Control, Automation and Systems (ICCAS),
pages 2468-2472, 2007.

A. Ko, B. Myers, and H. H. Aung. Six learning barriers
in end-user programming systems. In IEEE Symposium

on Visual Languages and Human Centric Computing,
pages 199-206, 2004.

B. Lester. Robots’ allure: Can it remedy what ails
computer science? Science, 318(5853):1086-1087, 2007.

H. Lieberman, F. Paterno, M. Klann, and V. Wulf.
End-User Development: An Emerging Paradigm, pages
1-8. Springer, 2006.

M. J. Matari¢, N. Koenig, and D. Feil-seifer. Materi-
als for enabling hands-on robotics and stem education.
In In AAAI Spring Symposium on Robots and Robot
Venues: Resources for AI Education, 2007.

B. Myers. Visual programming, programming by exam-
ple, and program visualization: a taxonomy. In ACM
SIGCHI Bulletin, volume 17, pages 59-66, 1986.

B. Nardi and J. Miller. The spreadsheet interface: A
basis for end user programming. Hewlett-Packard Lab-
oratories, 1990.

R. B. Osborne, A. J. Thomas, and J. R. Forbes. Teach-
ing with robots: A service-learning approach to mentor
training. In ACM Technical Symposium on Computer
Science Education (SIGCSE), pages 172-176, 2010.

F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada.
Thymio ii, a robot that grows wiser with children. In
IEEE Workshop on Advanced Robotics and its Social
Impacts (ARSO), pages 187-193, 2013.

J. Weinberg and X. Yu. Robotics in education: Low-
cost platforms for teaching integrated systems. Robotics
& Automation Magazine, IEEE, 10(2):4-6, 2003.

J. Wong and J. Hong. Making mashups with marmite:
towards end-user programming for the web. In Pro-
ceedings of the ACM conference on Human factors in
computing systems (SIGCHI), pages 1435-1444, 2007.

	Introduction
	Related Work
	Accessible Robot Programming
	Robot Platform
	CodeIt
	Accessibility

	Robot Programming Workshop
	Curriculum
	Teaching the API
	Participants
	Projects

	Data, Observations, and Findings
	Collaborative vs. Individual Programming
	Post-Workshop Survey
	Perception about Programming
	Engagement with Content
	Disability in the Background
	Computer Science Concepts

	Discussion
	Conclusion
	Acknowledgments
	References

