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Abstract—Robots deployed in human-populated spaces often
need human help to effectively complete their tasks. Yet, a robot
that asks for help too frequently or at the wrong times may cause
annoyance, and a robot that asks too infrequently may be unable
to complete its tasks. In this paper, we present a model of humans’
helpfulness towards a robot in an office environment, learnt from
online user study data. Our key insight is that effectively planning
for a task that involves bystander help requires disaggregating
individual and contextual factors and explicitly reasoning about
uncertainty over individual factors. Our model incorporates
the individual factor of latent helpfulness and the contextual
factors of human busyness and robot frequency of asking. We
integrate the model into a Bayes-Adaptive Markov Decision
Process (BAMDP) framework and run a user study that compares
it to baseline models that do not incorporate individual or
contextual factors. The results show that our model significantly
outperforms baseline models by a factor of 1.5X, and it does so
by asking for help more effectively: asking 1.2X times less while
still receiving more human help on average.

I. INTRODUCTION

As robots are increasingly deployed in dynamic and uncer-
tain human environments, situations will arise that they are
not fully equipped to handle. Consider the scenario of a robot
performing tasks in an office building, like delivering mail
or escorting someone to an appointment. Due to limitations
in hardware and computation, environmental uncertainties, or
a lack of domain knowledge, the robot might get lost, get
knocked over, or be asked to go to a location it is unfamiliar
with. One way to address these challenges is for the robot to
ask for human help [38, 20, 35, 42]. However, the decision
of who and when to ask for help is nuanced. A robot that
asks the same user for help too frequently may annoy them to
the point that they stop helping [20]. A robot that repeatedly
interrupts the user at inappropriate times—such as when they
are engaged in another primary task—may annoy them to the
point that they want to physically harm the robot [34]. On the
other hand, a robot that does not ask for help often enough
may take too long to complete its tasks, or fail.

In this paper, we address the following research question:
How can a robot model human helpfulness, in order to balance
the dual objectives of efficiently completing its tasks and
minimizing the number of times it asks for help? We consider
two types of factors: individual factors, which are unchange-
able (and often unobservable) characteristics of a human, and

Fig. 1: The user performs tasks in a virtual office environment
while a robot periodically asks them for help. We use this
environment to develop a model of human helpfulness and
evaluate a policy that autonomously generates help requests1.

contextual factors, which can change over time and embed
the human within their broader physical and temporal context.
This work builds on two threads of past work. The state-of-
the-art approach to modeling human helpfulness [38] attributes
all variance in human helpfulness to the individual factor of
“availability,” and does not account for contextual factors.
Further, their associated planning framework does not reason
about the robot’s uncertainty over the individual factor, thereby
preventing the robot from engaging in information-gathering
behaviors to intentionally learn the user’s “availability” during
real-time execution. On the other hand, the state-of-the-art
approach to modeling human interruptability [2] accounts for
a rich array of contextual factors—the human’s body pose
at that time, audio data, and objects in the scene—but does
not account for individual factors that may be learnt through
repeated interactions with the same person. Our key insight is
that effectively planning for a task that involves bystander help
requires disaggregating individual and contextual factors and
explicitly reasoning about uncertainty over individual factors.

In this work, we develop a predictive model of human help-
giving behaviors (Sec. III), learned from data collected in a

https://roboticsconference.org/program/papers/016/


pask

Human 3
Human 1

pr
ob

ab
ili

ty
 o

f h
el

pi
ng

HUMAN 
HELP 

MODEL

user id

current busyness 
level

past frequency of 
help requestsROBOT

1. The robot needs 
help finding a room

2. The human help model, which is updated based on past interactions 
with each human, allows it to predict the likelihood a person will help it.

3. The robot decides whether to request help or not for each human it encounters based on the model.

HUMAN-1

?

HUMAN-3

?

HUMAN-2

walks past

? ? ? ? ?

...

history of interactions

1. The robot needs 
help finding a room.

2. The human help model, which is updated based on past interactions 
with each human, allows it to predict the probability a person will help.

?

pr
ob

ab
ili

ty
 o

f h
el

pi
ng

Human 
Help 

Model

human’s latent 
helpfulness

human’s current 
busyness

robot’s past frequency of 
asking this human

Human 1

hUID

P(
h U

ID
)

?

?

?

?

?

...

history of interactions w
ith that hum

an

? ? ? ? ?

...

history of interactions

3. For each human the robot encounters, it uses the human help model to decide whether to ask them for help.
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Fig. 2: Our human help model, used by the robot when it needs help finding a room, predicts the probability of a human (with
user ID UID) helping the robot. The model takes in the human’s latent helpfulness hUID (learnt from past interactions with
that human), the human’s current busyness b, and the robot’s past frequency of asking the human for help ρask. The robot
integrates the human help model into its planning framework to decide whether to ask the humans it encounters for help.

virtual office environment (Fig. 1)1, and integrate the model
into a Bayes-Adaptive Markov Decision Process (BAMDP)
planning framework (Sec. IV). Our model and planning frame-
work incorporates an individual factor (the human’s latent
helpfulness) and contextual factors (the human’s busyness and
the robot’s past frequency of asking for help). To understand
the importance of both types of factors, consider the example
in Fig. 2. When the robot encounters Human 1, it has learnt
from past interactions that the human has relatively high latent
helpfulness hUID, and therefore asks for help. When the robot
encounters Human 2, it has learnt in the past that they have
relatively low latent helpfulness, so does not ask. With Human
3, the robot has high uncertainty in its belief about their
latent helpfulness, and therefore asks for help to gather more
information about their latent helpfulness. When it sees Human
1 again, the robot’s belief over their latent helpfulness has
shifted positively because they helped last time; despite that,
because the human is busy, the robot decides not to ask. These
behaviors are the direct result of disaggregating individual and
contextual factors and explicitly reasoning about the robot’s
uncertainty over individual factors.

We evaluate our model with two user studies, comparing
the emergent behavior of a robot that uses our model to the
emergent behavior of one that uses baseline models that do
not have individual or contextual factors (Sec. V). The results
show that our model significantly outperforms both baselines

1See the virtual office environment at https://youtu.be/PkU5e5lGOKM

by a factor of 1.5X, and that it does so by asking for help more
effectively: asking 1.2X times less while still receiving more
help on average. This paper makes two key contributions:

1) A model of human helpfulness that integrates individ-
ual and contextual factors, as well as the associated
methodology that can be extended to other models of
helpfulness with both types of factors.

2) A BAMDP planning framework that integrates the hu-
man help model, as well as an in-depth investigation into
the robot behaviors that emerge from different human
help models integrated into that framework.

II. RELATED WORK

A. Autonomously Generating Help-Seeking Behaviors

Several past works have focused on robots autonomously
generating help-seeking behavior, some of which are in this
survey on failures in human-robot interaction [25]. Many of
these works assume the human is always available to provide
help: navigating with an oracular teacher [35], learning from
demonstrations [12], and active learning [10]. Works that do
not make that assumption seek to model the uncertainty in
human behavior. One work models how humans interpret
natural language help requests, and then generates the requests
likely to result in desired human actions [28]. Another work
models the accuracy of humans given a visual input and uses
that model to determine when and how to ask for help [7].

The work of Rosenthal [38] is most similar to ours; it
also focuses on asking for help from bystanders in an office
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environment using POMDPs. Yet, their model attributes all
variability in whether humans help to the individual factor of
“availability,” whereas our model decomposes “availability”
into its constituent individual and contextual factors. Their
planning framework assumes the individual factor is fully
observable. In contrast, our framework assumes it is unob-
servable, enabling the robot to engage in information-gathering
actions to improve its belief over the individual factor. Notably,
however, their user studies were conducted on a physical robot,
whereas ours are conducted in a virtual office environment.

Human help is also related to interruptability, covered in
this survey [44]. A key interruptability work in robotics uses
features such as body pose, audio data, and nearby objects
to predict how interruptable a human is [2]. These are all
contextual features, because they change over time and are
not particular to individuals. This focus on contextual factors
extends to other interruptability work. Of the 41 works whose
model input features are surveyed in [44], only one incorpo-
rates fixed, individual factors, and that work’s focus is not the
model [43]. In contrast, our model incorporates both individual
and contextual factors, enabling the robot to personalize its
help-seeking behavior to the user and their context.

B. Human Responses to Help-Seeking Behavior

Other works that investigate human helpfulness study hu-
man responses to help-seeking behavior. These works have
revealed that humans are more likely to help robots that ask
politely [42], provide justifications [6], indicate urgency [9],
require less help [38], display emotion [13], offer people
desired items [3], maintain appropriate interpersonal distance
[46], establish smooth communication with the person [47],
and are actively doing tasks for the person [1]. Others showed
that humans are less likely to help robots while they are doing
a primary task [26, 18] or if they have been exposed to robot
failures [33]. Yet other works found that microcultural factors
(e.g., social atmosphere) influences whether humans help a
robot [17] and that help-seeking robots had a higher perceived
usability [30]. Finally, multiple works found that robots that
ask for help too frequently, especially while the human is
doing a task, can annoy their helpers [20, 34, 29]. We use
insights from these works to design our robot’s help queries—
for example, by using negative politeness [42] in the query—
and to inform the factors we include in our model.

C. POMDPs in Human-Robot Interaction

Several works in human-robot interaction have used Par-
tially Observable Markov Decision Processes (POMDPs) and
their derivatives (e.g., MOMDPs, BAMDPs) to plan robot
actions. Some of these works used pre-specified models of
human behavior within their POMDP [5, 37]. Others learnt
their models from data [11, 45, 36]. One such work gathered
labels for the unobservable factor—human trust—from a user
study and used supervised techniques to learn the model [11].
Another work pre-specified the values of the unobservable
factor—human subgoals—and used unsupervised techniques
to infer that factor’s role in the model [45]. Yet another work

used unsupervised clustering to jointly learn the values of the
unobservable factor—human type—and that factor’s role in the
model [36]. Like the latter approach, we use an unsupervised
technique to jointly infer the values of the unobservable factor
and its role in the model. However, we use an alternate
technique, generalized linear mixed models, that enables our
model to: 1) incorporate contextual factors; and 2) learn a
continuous, not discrete, values for the unobservable factor.

III. MODELING HUMAN HELPFULNESS

We develop a model of humans’ helpfulness using data from
an IRB-approved online user study. Our model predicts the
human’s probability of helping the robot based on the human’s
busyness, the robot’s past frequency of asking for help, and
the human’s latent helpfulness. We selected human busyness
and robot past frequency of asking because past works have
indicated their importance [38, 20, 34], but have not modeled
their impact on whether humans help. We decided on an online
user study to adapt to the COVID-19 pandemic and to provide
us additional control over potentially confounding variables.

A. Scenario

Our scenario takes place in a virtual online office environ-
ment (Fig. 1)1, where a human user and a robot are doing
unrelated tasks that both benefit the office generally. Created in
Phaser32, this 2D top-down environment contains 31 rooms—
offices, conference rooms, lounges, and restrooms—based on
an academic building. The user controls an IT administrator
who goes between rooms performing routine computer main-
tenance tasks. Every task has an associated time limit to start
the task, after which the user starts losing points. Periodically,
the user is given a break, where they have no time limit and
are asked to go to a lounge or restroom. The office building
also contains a mail delivery robot that navigates between the
rooms; users are told that the robot is new and still learning
about the building. The robot periodically asks the user to lead
it to its destination. When asked, the user can either ignore the
robot, click “Can’t Help,” or click “Yes” and lead the robot
until they click “Stop Following.” The robot moves to targets,
including the human, using the A* algorithm, and follows the
human 1 cell away. Users use the arrow keys to move, use the
mouse to click buttons, and hold the spacebar for 10 seconds to
perform computer maintenance tasks (not included in the time
limit). Note that the time limit includes every action the user
takes between the end of the previous task and the beginning
of the next task, including time they contemplate helping the
robot. Further note that the time limit is the same regardless
of whether users completed their previous task early or late.

B. Experimental Design

Our user study studies two independent variables, the hu-
man’s busyness b ∈ [0, 1] and the robot’s frequency of asking

2https://phaser.io/



ρask ∈ [0, 1], and one dependent variable, human_helps:

b =
min_time_for_task

available_time_for_task
(1)

ρask =

T∑
t=T−k

1 [did_robot_askt]

k
(2)

human_helps =

{
1 if the human helped accurately
0 else

(3)

b is the ratio of the minimum time it would take the human
to get to their goal and the time they have available. b = 0
corresponds to no time limit (i.e., free time) and b = 1
corresponds to no time to spare. ρask is the frequency of
the robot asking for help, over the last k times it saw the
person (t in Eq. 2 indexes the discrete timesteps when the
robot saw the human). We set k := 5, as an experimental
design consideration to balance between covering ρask’s range
while having a manageable number of conditions in the study.

We use a 3× 5 study design, with a within-subjects factor
of busyness b (3 levels: 1

3 or “high,” 1
7 or “medium,” and 0

or “free time”) and a between-subjects factor of frequency of
asking ρask (5 levels: 0.2, 0.4, 0.6, 0.8, 1.0). “High” busyness
is barely enough time to complete the task, “medium” is barely
enough time to help the robot and complete the task, and “free
time” has no time limit. The user completes 28 tasks, where
the busyness follows a fixed, repeating order of “medium,”
“free time,” “high,” etc. The task time limit is calculated as
player_speed · shortest_path_to_goal

b where the player speed
is fixed. The robot appears during a predefined 20 of those
28 tasks and either walks past the human or asks the human
for help, depending on the frequency condition. To account
for people’s varied navigation techniques, the robot does not
appear at a specific time or location, but rather whenever the
human is a fixed proportion of the distance to their goal. All
factors other than busyness and frequency are controlled: the
human and robot sequence of goals are fixed, the distance
between consecutive human goals is within a small range, and
the deviation required of humans to help the robot is also
within a small range.

After reading the study description, the user does a tutorial
that introduces the mechanics of the office environment: mov-
ing the character, finding rooms, interacting with the robot, etc.
They then complete the study, after which they are taken to a
survey that includes the NASA-TLX [22], RoSAS [8], open-
ended questions, and demographic questions. Participants were
recruited on Amazon Mechanical Turk, had an approval rate
≥95%, were from predominantly English-speaking countries,
and were compensated $5 for this 35 minute study.

C. Hypotheses

• Hypothesis A.1: The higher the busyness b, the lower the
probability of helping. This is based on past work that
found that a robot repeatedly interacting with a human
who is doing another task annoys the human [34].

• Hypothesis A.2: The higher the frequency ρask, the lower
the probability of helping. This is based on a survey that
found that office workers were less willing to help a robot
that asked for help more frequently [38].

D. Dataset

Our final dataset had n = 140 participants (mean age 37.6,
47 F, 91 M, 2 other), evenly balanced across the 5 frequency
levels. This corresponds to 1260 requests for help, evenly bal-
anced across the 3 busyness levels. This excludes participants
who did not follow tutorial instructions. Participants helped
the robot accurately 29.3% of the time, by leading the robot
to its requested room. Participants clicked “can’t help” 21.3%
of the time, and ignored the robot 45.3% of the time. This is
on par with past works, which found that 44% of surveyed
people [47] and 37% of office inhabitants [38] noticed but
did not interact with a help-seeking robot. The other 4.1% of
the time the user either inaccurately or mistakenly helped the
robot (e.g., clicked “yes” and immediately “stop following”).
Because inaccurate help occurred infrequently, we treat human
helping as a binary—either they helped accurately or not.

E. The Human Help Model

We want a model-learning approach that does the following:
1) Takes in (user ID (UID), b, ρask, human_helps)

datapoints;
2) Infers humans’ unobservable latent helpfulness, hUID, a

factor that explains individual variation in behavior;
3) Predicts users’ probability of helping given their latent

helpfulness, busyness, and the robot frequency of asking.
To meet these requirements, we use generalized linear mixed
models (GLMM) with a logistic link function. We build up the
model using stepwise regression, a procedure that iteratively
adds the most significant factor—main factors first and then
interaction factors—until no factor significantly improves the
model. The resulting model has user ID (UID) as a random
effect, busyness as a main effect, and busyness and frequency
as an interaction effect. Mathematically, the model is

P(human_helps | hUID, b, ρask) =

1

1 + exp (−f(hUID, b, ρask))
, (4)

f(hUID, b, ρask) = hUID + c1 + c2 · b+ c3 · b · ρask , (5)

hUID ∼ N (0, σ2) , (6)

where c1, c2, c3, and σ2 are learnt parameters.
Fig. 3 shows the human’s likelihood of helping the robot

by the frequency of asking and busyness, both for the dataset
and the fitted model (for the average human). Wald’s Test
reveals that busyness significantly influenced whether the
human helped (χ2(1)=161.25, p<0.001), with users being less
likely to help the robot when they are busier. This validates
Hypothesis A.1. Frequency of asking does not have a signifi-
cant main effect, but has a significant interaction with busyness
(χ2(1)=8.07, p=0.005). In particular, the robot’s frequency
of asking does not significantly influence the probability of



Fig. 3: The human’s probability of helping from our dataset
(solid) and predicted probability from the model (dash). Shad-
ing shows ±1 standard deviation. The large variance in human
help-giving behavior is due to individual factors (Fig. 4).

helping during free time, but as the human gets busier, they
are less likely to help a robot that asks more frequently. This
partially validates Hypothesis A.2. Note that although the
fitted model does not account for it, the data visually appears
to have a non-monotone relation with frequency, particularly
at ρask=0.4 and 0.8. A more granular analysis of the relation
between frequency and human help is required to understand
the shape of this curve, and is left for future work.

1) Understanding Individual Variation: Fig. 4 shows the
predicted probability of helping per user, using the latent help-
fulness value, hUID, that most predicted that user’s behavior.
These graphs reveal that the learnt individual differences are
thresholding differences. Each person had different threshold
busyness and frequency levels at which they helped. For
example, some only helped during free time, while others
risked being late in order to help. This behavior could not
be modeled without both individual and contextual factors;
only-contextual (solid black line) would miss opportunities
to ask helpful people, and only-individual (which would be
horizontal lines) would ask even people who are very busy.

The open-ended responses reveal factors that may have
influenced users’ latent helpfulness. Some users felt they
should not have to help robots: “it would be acceptable for the
robot to ask employees that were responsible for the robot.”
Other users were influenced by assumptions about the robot:
“it seemed like it should be smart enough to know the layout”
or “I just felt helping would possibly help calibrate it”. Yet
others reported a perceived similarity with the robot: “I felt bad
for him...We’ve all been the new girl once.” These responses
reveal the nuances of an individual’s helpfulness towards a
robot, some of which is captured in latent helpfulness.

2) Additional Factors: The open-ended responses also re-
veal unmodeled contextual factors that influence whether hu-
mans help. Multiple users wrote about the deviation required to
help the robot: “I helped...if the place it wanted to go was near
where I was going.” Although we can measure that deviation
in the online environment, we did not include it in our model

Fig. 4: The model’s predicted probability of helping per
individual, by busyness level at ρask = 0.4 (left) and by
frequency of asking at b = 1

7 , or “medium” (right). The solid
line is a model that does not account for individual factors.

because a real-world robot may not know where the human
is going before asking for help. For other users, stochasticity
influenced whether they helped: “Sometimes...I simply didn’t
feel like using my time to help.” There may have also been a
periodic nature in some users’ help-giving: “I tried to help the
robot...to have a slight change in my activity.” These responses
point to avenues to extend our model in future work.

F. Model Evaluation

We use 5-fold cross-validation to compare our model to
baselines. Our proposed model, Hybrid, is both individualized
and contextual. We compare it with Contextual, which is non-
individualized but contextual (excluding hUID in Eq. 5), Indi-
vidual, which is individualized but non-contextual (excluding
c2 and c3 in Eq. 5), and Only Intercept, with is neither (only
c1 in Eq. 5). We also compare it with a Random Forest model
with the contextual factors as input, a state-of-the-art approach
for predicting human interruptability [2]. Individual is similar
to a state-of-the-art model of human helpfulness [38].

Unlike common applications of cross-validation, where the
input data is fully known, the individualized models take in the
unobservable latent helpfulness. We use sequential reasoning
to overcome this challenge. When evaluating user i in the
test set, the first time the robot asks for help we assume they
have the mean hUID of 0 (the prior learnt by GLMM). Every
subsequent time, we minimize the cross-entropy loss function
to predict their most likely latent helpfulness, given the robot’s
past interactions with them.

Table I shows the results of this 5-fold cross-validation,
where proportions are inversely weighted by number of inter-
actions to prevent users in higher ρask conditions from dispro-
portionately influencing the results. To analyze the results, we
ran a repeated measures ANOVA on both the accuracy and
F1 scores of these models, with model as a within-subjects
factor and fold as a participant identifier. The accuracy data
aligned with both the equality of variance (Mauchly’s Test of
Sphericity) and the normality (Shapiro-Wilk test) assumptions
of the ANOVA. The F1 score data aligned with the equality



Model Accuracy F1 Score

Hybrid 0.78 (0.03) 0.63 (0.03)
Contextual 0.70 (0.03)∗∗ 0.42 (0.24)
Individual† 0.71 (0.05)∗∗ 0.41 (0.07)∗∗

Only Intercept 0.69 (0.06)∗∗ 0.00 (0.00)∗∗∗

Random Forest† 0.68 (0.05)∗∗ 0.41 (0.23)

TABLE I: 5-fold cross-validation on Hybrid and baseline
models. Hybrid has a significantly higher accuracy and F1
score on unseen data than baselines. Values are mean (standard
deviation), †state-of-the-art, ∗∗p < 0.01, ∗∗∗p < 0.001.

of variance assumption but violated the normality assumption
for Random Forest and Contextual; however, we still used
ANOVA because past works have shown it to be robust to
violations of normality [40, 27]. This analysis revealed that the
model had a significant affect on accuracy (F (4, 16)=13.14,
p<0.001) and the F1 score (F (4, 16)=10.18, p<0.001). A
post-hoc paired t-test comparing every model to Hybrid re-
vealed that Hybrid significantly outperformed every baseline
on accuracy (p<0.01 for all), and significantly outperformed
every baseline but Contextual and Random Forest on F1
score (p≤0.001 for significant differences). The high standard
deviation for Contextual and Random Forest’s F1 scores is due
to folds where they predicted the human would never help.

G. Human Perceptions

For the RoSAS, a one-way ANOVA with frequency as a
between-subjects factor found no significant differences. This
might be because each human experienced one robot, so may
not have baseline expectations of robot behavior to compare
to. For the NASA-TLX, Mental Demand had a significant
difference (F (4, 135)=4.00, p=0.004), where ρask=0.4 had
significantly higher mental demand than 0.2 (p=0.002). This
could be because at 0.4 the robot asks frequently enough to
not be novel but not frequently enough for the human to be
familiar with helping it; investigating this is left to future work.

IV. PLANNING WITH THE MODEL

Since Hybrid incorporates the unobservable factor of la-
tent helpfulness, it requires a planning framework that can
reason about uncertainty. We formalize the problem of a
robot completing its task with bystander help as a Bayes-
Adaptive Markov Decision Process (BAMDP) [14, 31], which
we selected because the robot’s uncertainty is over a fixed pa-
rameter. We present a high-level planning framework, which is
invoked when the robot sees a bystander, and outputs whether
the robot should ask them for help. Because our subsequent
evaluation (Sec. V) analyzes the robot behavior that emerges
from different human help models, this planning framework
focuses on the case where the robot is heavily dependant on
human help—and therefore the model—to achieve its goal.

A. BAMDP Formalization

A BAMDP is a 7-tuple (S,Φ,A, T ,R, b0, γ) [31]. The state
(bt, ρask,t,human_helpst−1,correct_roomt−1) ∈ S

consists of the human busyness at time t, the robot’s past
frequency of asking as of time t, whether the human helped
accurately at time t − 1 and whether the robot reached the
correct room at time t− 1. Time t is incremented every time
the robot sees the human. The latent variable hUID ∈ Φ
is the human’s latent helpfulness, and the robot’s actions
A = {aask, awalk past} are either to ask the human for help
or to walk past them and attempt to reach its goal on its own.

Within the transition function T , the busyness b transitions
uniformly at random because the robot assumes no regularity
in human busyness (although this could be improved with
domain-specific knowledge). The latent helpfulness hUID is
fixed, and the frequency of asking ρask transitions as ex-
pected. If the robot asked for help, the transition function
uses the model to predict the human’s probability of helping
P(human_helps | hUID, b, ρask). If the robot did not ask or
the human does not help, the robot picks a room uniformly
at random ( 1

31 chance of success), and sets correct_room
accordingly. Note that this transition function is modular, so
any probabilistic model of human help can integrate into it.

The reward function R gives a penalty of −rask ∈ [0, 1]
for asking for help and a reward of 1 for reaching a correct
room. The initial belief distribution, b0(hUID) := N (0, σ2),
is the prior learnt by GLMM. The discount factor γ := 0.99.

1) The Belief Update: At every time t, the robot updates its
belief over the human’s latent helpfulness bt(hUID). Standard
belief updates use Bayes rule with the precise transition
probabilities from T as the likelihood function. However, such
belief updates assume the model explains all the variability of
human behavior, which is untrue. Hybrid mispredicted 22% of
human actions, and open-ended responses revealed unmodeled
factors and stochasticity that influenced users’ help-giving
behaviors (Sec. III-E2). Past works have suggested ways to
augment Bayes Rule to account for such model misspecifica-
tions [32, 21]. However, in those works the degree of model
misspecification is unknown, whereas in our work the training
data reveals the amount of variance that is unexplained by
the model. To account for this expected unmodeled variability
of human behavior, we augment the belief update with the
distribution of expected noise from human behavior, E .

bt(hUID | human_helpst, bt, ρask,t) =

1

η

(
P(human_helpst | hUID, bt, ρask,t) + E

ε∼E
[ε]

)
·

bt−1(hUID) , (7)

η =

∫
hUID

(
P(human_helpst | hUID, bt, ρask,t) + E

ε∼E
[ε]

)
· bt−1(hUID) d hUID , (8)

where E is the mean-0 normal distribution of model residuals,
truncated so probabilities stay in [0, 1]. In practice, augmenting
the belief update with expected noise serves to slow the belief
update, giving the robot more interactions before inferring that
the human’s behavior is due to latent helpfulness.



Hybrid Contextual Individual†
Metric (n=50) (n=25) (n=25)

Cumulative Reward 2.74 (3.18) 1.87 (2.95)∗ 1.80 (3.04)∗∗

Num Correct Rooms 4.29 (3.88) 3.80 (3.70) 3.88 (3.03)
Num Asks 7.76 (3.76) 9.64 (4.12)∗∗∗ 10.40 (1.16)∗∗

Num Help Received 3.83 (3.91) 3.26 (3.72) 3.48 (3.15)∗

Num Help Rejected 3.93 (1.31) 6.38 (1.24)∗∗∗ 6.92 (3.36)∗∗∗

TABLE II: The mean (standard deviation) of cumulative
reward, number of correct rooms reached, number of times
asked, number of times helped, and number of times not
helped, †state-of-the-art, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

2) Planning: BAMDPs are a special case of POMDPs
[14], so any POMDP solver that accounts for a custom belief
update can be used. We use Partially Observable Monte-
Carlo Planning (POMCP)3 [41], an online, stochastic POMDP
solver. We discretize the states into 6 busyness levels in
[0.0, 0.4] and 20 latent helpfulness values in [−2σ, 4σ].

V. EVALUATION

We conducted a user study to evaluate the tradeoffs between
policies that use Hybrid, Contextual, and Individual, trained on
the full dataset. Hybrid has parameters c1=−0.05, c2=−5.90,
c3=−8.60, σ2=5.89 . Note that Individual plugged into our
planning framework is similar to the state-of-the-art LM-
HOP and HOP-POMDP [37], with the addition of Bayesian
reasoning over the individual factor.

A. Experimental Design

We ran two within-subjects experiments: Hybrid v. Contex-
tual and Hybrid v. Individual. Each study contained the study
description, tutorial, condition#1, survey#1, condition#2, and
survey#2. Both conditions had the same sequence of 28 human
tasks, and the robot interacted with the human at the same 20
pre-defined tasks. To indicate the robots were different, we
colored the robot in condition#1 orange and in condition#2
purple. The main differences from the data collection study
were: 1) whether the robot asked for help was determined in
real-time using the planning framework; and 2) the human
busyness for non-free-time tasks was randomized. Users ex-
perienced policies in a random order. Both survey#1 and #2
included the NASA-TLX [22] and RoSAS [8]. Survey#2 also
had forced-choice (e.g. ”which robot was more annoying?”),
open-ended (e.g. ”what differences were there between robot
#1 and robot #2?”), and demographic questions. For each
condition, our dependant variables were the cumulative reward
(Eq. 9), number of correct rooms the robot reached, number
of times it asked for help, number of times it was helped, and
number of times its help request was rejected.

cumulative_reward =

num_correct_rooms− rask · num_asks (9)

3https://github.com/JuliaPOMDP/BasicPOMCP.jl

We set rask:=0.2, based on a parameter sweep using
simulated users. At rask=0 or 1, policies always or never
asked, regardless of the human help model. At rask=0.2, the
policies relied on the model and asked an average of 25−50%
of the time, which seemed sufficient for users to gain an
idea of what each policy does. We recruited participants on
Amazon Mechanical Turk with the same criteria as above,
compensating them $7.5 for this 50 minute study.

B. Hypotheses

• Hypothesis B.1: Hybrid will have a higher cumulative
reward than Contextual (a) and Individual (b).

• Hypothesis B.2: Hybrid’s help requests will be rejected
less than Contextual’s (a) and Individual’s (b). The intu-
ition is that Individual will not identify when people are
too busy to help and Contextual will not identify which
people are less helpful, so both will ask inappropriately.

C. Results

We collected data from n=100 people (mean age 36.2, 35 F,
65 M), with 50 people per experiment and 25 per order (“Hy-
brid 1st” or “Hybrid 2nd”). This excludes participants who did
not follow tutorial instructions or incorrectly answered survey
attention check questions. Because multiple of the dependant
variables violated ANOVA’s equality of variance (Box’s Test,
Levene’s Test) and normality (Shapiro-Wilk Test) assumptions,
we used the non-parametric Related Samples Wilcoxon Signed
Rank Test to analyze the relation between policy (2 levels)
and the dependant variables. We preceded this analysis with
an independent samples t-test to investigate ordering effects,
and found no significant impact between order and any of the
dependant variables (p=0.1−0.9).

Table II shows the policy’s mean and standard deviation per-
formance, compared pairwise with Hybrid. Hybrid received a
significantly higher (1.5X higher) cumulative reward than Con-
textual (Z=−2.405, p=0.016) and Individual (Z=−2.599,
p=0.009), also shown in Fig. 5 (left). This validates Hypoth-
esis B.1 and demonstrates that Hybrid significantly outper-
formed baselines. Further analysis reveals that Hybrid asked
for help significantly less (1.2X less) than both Contextual
(Z=−4.004, p<0.001) and Individual (Z=−3.048, p=0.002).
Despite asking for help less, Hybrid received more help than
Contextual and significantly more than Individual (Z=−2.520,
p=0.012). Hybrid also got significantly fewer help requests re-
jected than Contextual (Z=−4.848, p<0.001) and Individual
(Z=−5.325, p<0.001). This validates Hypothesis B.2.

Fig. 5 (right) provides additional insight into the policies’
behavior. This graph clusters users by observed helpfulness,
num_help
num_asks , measured on Hybrid because every user experienced
it. This graph reveals that Hybrid consistently got less rejected
help (negative y-axis) than baselines, regardless of how helpful
the human was. For less helpful people, Hybrid recognized that
sooner and asked less, whereas for more helpful people Hybrid
received more help (positive y-axis). Contextual asked (bar
height) a similar amount regardless of helpfulness, because
it did not individualize. Both Hybrid and Individual asked
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Fig. 5: Left: The cumulative reward distribution per policy (black circles are mean, diamonds are outliers). Right: The number
of times the human helped (positive y) and did not help (negative y) the robot, partitioned by human observed helpfulness.

more helpful people more, although Individual received more
rejected help because it did not account for contextual factors.

D. Human Perceptions

We analyzed human responses to the RoSAS with the same
t-test and Wilcoxon test as above. This revealed that Hy-
brid scored significantly lower on the perceived “discomfort”
measure than Contextual (Z=−2.085, p=0.037), which was
primarily due to users associating Contextual with “awkward”
significantly more than Hybrid (Z=−3.136, p=0.002). This
could be because Contextual asked much more than Hybrid,
even for humans who are not latently helpful, which can come
across as “awkward”. There was a significant ordering effect
with user’s perception of Individual’s “warmth” (t(48)=2.143,
p = 0.037), where users who experienced Hybrid first rated
Individual as significantly less warm (Z=−2.454, p=0.014),
while others did not have a significant difference. The sig-
nificant difference was primarily due to those users associ-
ating Hybrid with “feeling” significantly more (Z=−2.300,
p=0.021). This might be because Hybrid accounted for the
human’s busyness, which can come across as “feeling.”

There were no significant effects on the NASA-TLX, and
the few significant effects on forced-choice questions had too
many ordering effects. However, the open-ended responses
revealed that users perceived the differences between policies.
When asked what differences there were between robots, users
in Hybrid v. Individual experiment wrote that Hybrid asked
for help at more appropriate times: “Robot #2 [Hybrid] also
stopped me at more appropriate times like when I was on
a break or had a lot of time.” Similarly, users in Hybrid v.
Contextual identified individualization as a difference between
the policies: “Orange [Hybrid] stayed away after telling it no.”
Finally, across both experiments, users wrote about Hybrid’s
likeability: “Purple [Hybrid] was politer [than Individual]” or
“Robot 1 [Contextual] was more annoying and asking (sic) for
help than robot 2 [Hybrid].”

VI. DISCUSSION

In this work, we developed a model of human help that
disaggregated individual and contextual factors, integrated the

model into a BAMDP planning framework, and demonstrated
that the resulting policy significantly outperformed baselines.

A. Generalizability of the Model

Our disaggregation of factors into individual factors, which
are unchangeable (and often unobservable) characteristics of a
human, and contextual factors, which can change and embed
the human within their broader physical and temporal context,
is a high-level separation that we believe will generalize
to other human help scenarios. In a scenario where both
factors are important, our method enables the robot to better
achieve its goals. In a scenario where one factor dominates,
our approach reduces to the individual [37] or contextual
[2] types of models in prior work. The specific contextual
factors we use—busyness and robot frequency of asking—are
also general factors that we believe will impact any instance
of human help. Note that although the planning framework
assumes individual factors are fixed, because the belief update
is Bayesian it should adapt to gradual changes in latent
helpfulness. Some non-gradual changes could be explained by
contextual factors (e.g., students not being helpful during exam
time), although extending our approach to dynamic latent help-
fulness is left to future work. Finally, note that the BAMDP
planning framework can generalize to multiple humans—by
adding more hUID, b, and ρask values—although that scenario
may require extending the model for the bystander effect [19].

B. Deploying onto a Physical Robot

Deploying this approach on a physical robot requires a
module to perceive busyness. This can use proxies such as
walking speed, known calendar events, or factors linked to
interruptability such as eye gaze [2] or time of day [43].
Although such a module would result in partially-observable
busyness, initial simulation results revealed that even with
partially-observable busyness the comparative performance of
models was the same, but more noisy. Deploying this approach
on a physical robot also requires a module for perceiving
unique individuals. Finally, it requires reasoning about low-
level movement actions in addition to the high-level asking
actions we consider. One approach is integrating movement



actions into the BAMDP, so the robot can jointly reason about
movement and help (e.g., moving in a direction likely to
have human helpers). Another approach is maintaining the
separation between a high-level help policy and a low-level
movement policy, switching when the robot sees a human.

C. Broader Impacts

We discuss broader impacts of this work, following Hecht
et al. [23]’s approach of considering “reasonable broader
impacts, both positive and negative.” One potential posi-
tive impact is increasing robots’ robustness to unexpected
scenarios, by enabling them to ask for help in situations
they are unequipped for. This may also reduce the cost of
robots, by enabling them to do more with limited sensors and
computation. One potential negative impact is perpetuating
gender bias. Research has found that women tend to be, or are
expected to be, more altruistic, prosocial, or unselfish than men
[4, 16, 24, 15], a trend that has been mirrored with humans
helping robots [46]. Therefore, our robot’s behavior—asking
for help from humans who are believed to be helpful—could
result in disproportionately burdening women with providing
help. A technical approach to mitigate this risk is penalizing
the robot for repeatedly asking the same person. However,
fully understanding the social impacts of such a robot would
involve studying the socio-technical system—including em-
ployment conditions and culture—that the robot embeds into
(e.g., using the mutual shaping framework [39]).

D. Limitations and Future Work

One limitation of this research is that it was conducted
online. Past works indicate that the factors we model are still
relevant in real-world help [38, 20, 34], but the parameters
may differ. Another limitation is that our study had one person
in the office at a time. We believe multiple humans will
increase Hybrid’s advantage, since the robot can ask the most
latently helpful human, although that is left to future work.
Another limitation is that the model-learning methodology
can only account for factors with a monotone relationship to
the humans’ likelihood of helping, because of the GLMM’s
logistic link function. This can generalize to some but not all
of the additional factors users identified (Sec. III-E2). A final
limitation is that the robot did not improve its autonomous per-
formance based on the help. The robot did improve its ability
to ask humans for help—by learning their latent helpfulness—
but in the same scenario in the future it would still be unable to
autonomously complete the task. This was necessary to create
a scenario where the robot was dependant on human help.
However, some users’ open-ended responses showed that their
help was conditioned on robot improvement, so enabling the
robot to improve its autonomous performance based on human
help is a promising direction for future work.

An exciting direction for future work is incorporating ad-
ditional aspects of human help: human expertise, inaccurate
help, and multiple helpers. Another promising direction is
extending the approach to asynchronous remote help.
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