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Fig. 1. Given just a single observed human demonstration, Diffusion-PbD can synthesize robot manipulation programs that adapt to unseen objects,
unseen viewpoints, and unseen environments. This is done through the use of visual foundation models to both extract salient task structure in the form
of waypoints and to transfer that structure to new scenes by identifying reference point correspondences.

Abstract— Programming by Demonstration (PbD) is an in-
tuitive technique for programming robot manipulation skills
by demonstrating the desired behavior. However, most existing
approaches either require extensive demonstrations or fail to
generalize beyond their initial demonstration conditions. We
introduce Diffusion-PbD, a novel approach to PbD that enables
users to synthesize generalizable robot manipulation skills from
a single demonstration by utilizing the representations captured
by pre-trained visual foundation models. At demonstration
time, hand and object detection priors are used to extract
waypoints from the human demonstrations anchored to refer-
ence points in the scene. At execution time, features from pre-
trained diffusion models are leveraged to identify corresponding
reference points in new observations. We validate this approach
through a series of real-world robot experiments, showing that
Diffusion-PbD is applicable to a wide range of manipulation
tasks and has strong ability to generalize to unseen objects,
camera viewpoints, and scenes. Code and supplementary videos
can be found at https://diffusion-pbd.github.io

I. INTRODUCTION

General-purpose robots have the promise to automate
tasks in many human-centric environments such as homes
and workplaces. However, programming robots to robustly
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perform behaviors with every possible object in every pos-
sible environment is extremely challenging. Programming
by Demonstration (PbD) is a popular approach that enables
end-users to program new robot capabilities by simply
demonstrating the desired behavior [1]. For robots deployed
in human-centric environments, demonstration provides an
intuitive way for end-users to teach robots new skills without
having technical training or expertise in robotics. But this
approach typically requires a large-scale and diverse set
of demonstrations in order for the programmed capabilities
to generalize to new environments and objects, which is
not feasible for an end-user to provide. Ideally, an end-
user could program robot capabilities by providing just
a single demonstration of the desired behavior and those
capabilities would generalize to new scenarios. For example,
after demonstrating how to put a mug into a coffee machine,
the robot should be able to repeat this task with other mugs
even if they are visually distinct. Additionally, if the coffee
machine and mugs are re-arranged or moved to an entirely
different location the robot should still be able to perform
the demonstrated task.

Humans possess a remarkable ability to learn tasks from
a single demonstration and to apply the learned behaviors to
new situations [2]–[5]. This is achieved in part by drawing on
prior conceptual knowledge to infer the underlying structure

https://diffusion-pbd.github.io


of the task being demonstrated rather than directly mimicking
the demonstrator’s low-level actions [4]. For example, to
learn new manipulation skills we primarily pay attention to
interactions between the end-effector and objects rather than
the relative motions within and between joints. By extracting
the high level structure of the task rather than the low level
actions, we are able to more easily transfer the task to
new scenarios by identifying corresponding structure in new
scenes.

Inspired by these insights, we propose a novel approach to
PbD that enables programming generalizable robot manipu-
lation skills from a single observed demonstration, illustrated
in Figure 1. Our approach draws on the prior conceptual
knowledge encoded by pre-trained web-scale foundation
models to both extract the salient structure from an observed
demonstration and to identify the corresponding structure
in new scenes. In particular, we utilize features from pre-
trained diffusion models. While diffusion models are pri-
marily models for image synthesis, they have been shown to
implicitly encode rich information about the structure of the
scene, objects, and object parts within an image. We show
that within the context of a PbD framework, such capabil-
ity provides an elegant mechanism to generalize observed
demonstrations to new scenarios. We study the performance
of our method across 14 tasks on a real robotic manipulator
and find that our approach is surprisingly effective at a wide
range of manipulation skills, while utilizing only off-the-
shelf models with no additional fine-tuning required. We
thoroughly analyze the generalization capabilities of our
approach and study the contribution of diffusion features as
compared to popular alternatives.

II. RELATED WORK

A. Programming by Demonstration

Programming by Demonstration, also referred to as Learn-
ing from Demonstration or Imitation Learning, has been
the subject of four decades of robotics research [1], [6].
Approaches are often categorized based on the method of
providing demonstrations and in contrast to methods that
require moving the robot (e.g. through teleoperation [7]–[9],
kinesthetic teaching [10]–[12], or spoken commands [13]–
[15]), in this work we focus on programming by passive
observation, where the robot is programmed by observing
a human perform the desired behavior [16]–[20]. This is
particularly easy and intuitive for the user, requiring almost
no training to perform. However, learning generalizable
skills from passive observation is especially challenging
and approaches typically either heavily restrict the domain
or require a large and diverse set of demonstrations in
order to scale to scenarios outside of the demonstrated
examples. Some works take a user-guided approach to the
generalization problem, where the user provides additional
information to adapt the learned skills to new scenes [21]–
[24]. Another approach is to extract a reward function from
the provided demonstration which can then be used to fine-
tune the skill in novel scenes [18], [20], [25], but this requires
additional training time to fine-tune the robot policy in new

scenes. In this work, we propose to leverage large-scale
visual foundation models off-the-shelf, with no additional
fine-tuning, to extract robot manipulation skills from a single
observed human demonstration and to apply those skills to
new objects, viewpoints, and scenes.

B. Diffusion Models for Robotics

Diffusion models [26] have made great breakthroughs in
generative tasks such as image and video synthesis [27]–
[31]. Within robotics, diffusion models have been trained to
generate actions for manipulation [32]–[34], navigation [35],
[36], and human-robot collaboration [37], [38]. Addition-
ally, pre-trained image diffusion models have been utilized
to generate images used for robot training [39]–[42] and
planning [43], [44]. While diffusion models are primarily
used for generative tasks, recent works show evidence that
they implicitly encode rich information about the structure of
objects and scenes in images [45]–[47]. Based on this insight,
we propose to leverage features extracted from pre-trained
generative image diffusion models within a PbD framework
in order to find correspondences between structures observed
in demonstration scenes and those observed in novel scenes.

III. DIFFUSION PBD

We present Diffusion-PbD, a robot PbD framework for
synthesizing generalizable robot manipulation programs us-
ing only a single passively observed human demonstration.
Our approach utilizes pre-trained visual foundation models
to both extract salient structure from the observed demon-
stration and to find corresponding structure in novel scenes.
Specifically, we use pre-trained models with strong hand-
object priors to extract waypoints relative to observation-
centric reference points, then we utilize pre-trained diffusion
features to find corresponding reference points in novel
settings. In the following sub-sections we first formalize the
problem setting, then we provide a high-level overview of the
approach, and finally we describe each phase of the approach.

A. Problem Formulation

In this work, we consider PbD for robotic manipulation
tasks. Let A be the set of robot actions, and S the set of
world states. We assume access to a human demonstration
D = ⟨d0, d1, . . . , dTD

⟩ where each demonstration frame dt
is an RGB-D image at time t. Given a demonstration D and
an initial state s ∈ S, the goal is to generate an execution
ξ =

〈
a0, a1, . . . , aTξ

〉
, where at ∈ A is an action taken by

the robot at time t. The initial state s is defined by the envi-
ronment layout, the poses and states of all objects, and the
pose and state of the robot. The robot does not directly have
access to the initial state s, but only to an initial observation
o. The initial observation o = (I,K,D) includes an RGB-D
camera image I , the robot’s proprioceptive state K, and the
demonstration D. The task is considered successful if the
goal-conditions corresponding to the demonstration D are
true at the end of execution.
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Fig. 3. Diffusion-PbD composes a mixture of pre-trained web-scale foundation models to both extract salient structure from demonstration videos and
to transfer that structure to new scenes. Diffusion-PbD is composed of three main phases: (1) human and object detection, (2) waypoint extraction, (3)
skill execution. In the first phase, we pre-process the demonstration frames by detecting human hands and their interactions with objects in the scene.
Next, we map these detections to waypoints and robot gripper configurations. We anchor the waypoints relative to observation-centric reference points.
This representation allow us to map the skill to new scenes by finding corresponding reference points in the new observations.

B. Overview
Our PbD method composes a mixture of pre-trained web-

scale foundation models to both extract salient structure from
demonstration videos and to transfer that structure to new
scenes. Our method has three main phases (see Figure 3): (1)
demo perception, (2) skill representation, (3) skill execution.
In the first phase, we pre-process the demonstration frames
by detecting human hands and their interactions with objects
in the scene. Next, we map those detections to waypoints and
robot gripper configurations. We represent waypoints relative
to reference points in the observation, which allows us to map
the skill to new scenes by finding corresponding reference
points in the new observations.

C. Demo Perception
For robot manipulation tasks, timesteps when the end-

effector interacts with objects in the environment are partic-
ularly important. We process the demonstration D to extract
information about the hands in the scene and the objects that
they contact using 100DOH [48], a hand-object interaction
model that has been pre-trained on 100K images extracted
from a large-scale (131+ days) video dataset of humans
interacting with objects. We use 100DOH to extract, for
each demonstration frame dt, a hand bounding box bht and
a boolean contact variable ct indicating whether the hand
is in contact with an object or not. For every frame where
the hand is in contact with an object we additionally extract
an object bounding box bot . While bounding boxes give us
the rough position of hands and objects in the scene, we
look to obtain fine grained masks using Segment Anything
Model (SAM) [49]. For each hand bounding box bht and
object bounding box bot we prompt SAM to produce a hand
mask mh

t and object mask mo
t . 3D perception of the scene is

crucial for manipulation tasks, so we additionally produce a
point cloud Ct for each demonstration frame dt using the
RGB-D image and camera intrinsics. To properly imitate
the grasp and interaction on a robot, the pose of the hand
is important as well. We employ Mediapipe [50] for this
purpose, and detect the human hand pose pt represented

(a) (b) (c) (d)

Fig. 4. An illustration of the conditions used to identify key contact
frames for an example where a cup is lifted by the handle and moved onto
a plate. Key frames are extracted when (a) contact is made between the
hand and the target object, (b) contact is broken between the target object
and the environment (c) contact is made between the target object and the
environment or (d) contact is broken between the hand and the target object.

as 21 landmarks following the topology in [51]. The two
landmarks on the thumb and another two on the index finger
are used to represent a parallel jaw gripper. We define rt
as the rotation of this gripper model and gt as the distance
between fingers.

D. Skill Representation

Inferring the hand-object interactions from the demonstra-
tion is useful, but ultimately we want to extract waypoints
that can be executed by the robot. To accomplish this, we
first identify and extract contiguous contact sequences, or
clusters of timestamps where ct is true. Because hand-object
interaction detection can be noisy, we filter any sequences
that span less than three timestamps, leaving only those
that indicate sustained contact. We extract this set of con-
tact sequences Σ = ⟨σ0, σ1, . . . , σLΣ

⟩ where each contact
sequence is initially represented as a start timestamp and
end timestamp σ = (tstart, tend). We additionally compute
a pre-contact timestamp tpre by backing up from the start of
contact tstart until the hand mask mh

t no longer overlaps
with the object mask mo

t to obtain timestamp tpre. For
each contact sequence in Σ, we extract a set of waypoints
where each waypoint wi = (Pi, gi, ti) is made up of a 6-
DOF pose Pi, gripper width gi, and timestamp ti. We first
define a waypoint at the start of interaction, wstart using



the hand pose landmarks at the start of contact ptstart
. The

two pose landmarks on the thumb and another two on the
index finger are used to represent a parallel jaw gripper.
These points are lifted into 3D using the depth map and
averaged to obtain our contact point, which is combined with
the gripper rotation rtstart

to obtain our contact pose Pstart

and waypoint wstart = (Pstart, gtstart
). We additionally

compute a pre-contact waypoint wpre, the points from the
thumb and index finger landmarks at tpre are again lifted
into 3D, averaged, and combined with rtpre to produce pose
Ppre and waypoint wpre = (Ppre, gtpre). As illustrated in
Figure 4, we identify additional waypoints centered around
timesteps where contact is made or broken between the target
object and the environment. Finally, we define a waypoint at
the end of interaction wend by repeating this process with
the pose landmarks at the end of contact ptend

. At the end
of this process each contact sequence σ is represented as a
set of waypoints σ = ⟨w0, w1, . . . , wLσ

⟩.
The set of contact sequences Σ contains waypoints to

reproduce skills in the current scene, but we desire to
reproduce skills in novel scenes, including those with novel
viewpoints, object configurations, and objects. In this work,
we aim to leverage the features from pre-trained image
diffusion models for the purpose of re-identifying key way-
points in new scenes. To that end, we extract waypoints
relative to observation-centric reference points. To obtain
reference points, we look for key frames where contact is
made between the hand and the target object or between the
target object and the environment. To obtain a reference point
for a key frame where contact is made between the hand and
target object we extract a 3D point from the pose at the start
of contact Pstart. We project the 3D point onto the image at
timestep tpre to obtain a 2D reference point in image space.
To obtain a reference point for a key frame where contact
is made between the target object and the environment we
average the points in contact to obtain a 3D point and project
the resulting point on the the image at timestep tpre to obtain
a 2D reference point. After identifying reference points, we
recompute the pose in all waypoints using relative translation
from the nearest preceding reference point.

E. Skill Execution

To apply skills to new scenes we first map our reference
points to the novel observations using the popular Stable
Diffusion (SD) [52] image foundation model. SD has been
pre-trained on billions of images and the intermediate-layer
features of the model have been shown to implicitly encode
rich information about the structure of objects and scenes
in an image. In this work, we propose to utilize these
features within a PbD framework for robust reference point
generalization to unseen viewpoints, objects, and scenes as
illustrated in Figure 5. For each contact sequence in Σ, we
use SD to extract the diffusion features of our reference
demonstration frame dtpre and the first observation image
in the new scene I . The features are generated by adding
noise to the images, feeding the images through the network
of SD, and extracting the intermediate layer activations. For

more details we refer the reader to [45]. Through this process
we obtain two diffusion feature maps Fref and Ftarget. For
every waypoint wi in σ, we compare the cosine similarity
of the two features maps and identify the point in Ftarget

that is most similar to the reference point in Fref . This
point is then lifted into 3D using the depth map from I to
produce a 3D point in the new scene P̂i and new waypoint
ŵi = (P̂i, gi). Ultimately we obtain a set of waypoints for
the new scene σ̂ = (ŵ0, ŵ1, . . . , ŵLσ

). We convert each
contact sequence to a manipulation program for execution
on the robot wherein the end-effector motion and gripper
state are commanded according to the waypoints in σ̂. To
generate the motion between waypoints, we use a collision-
free motion planner to generate a trajectory of robot actions
for reaching the next desired waypoint goal. Specifically, we
use the GPU accelerated motion generation library cuRobo
[53]. After successfully reaching every waypoint goal, this
process is repeated for every contact sequence in Σ.

IV. EXPERIMENTS

To evaluate our approach, we conduct a series of real world
experiments across 5 indoor environments as illustrated in
Figure 6. In our experiments we seek to answer the following
research questions: 1) Is Diffusion-PbD practical for a wide
range of robot manipulation tasks? 2) How effective is
Diffusion-PbD at applying demonstrated manipulation tasks
to new viewpoints, objects, and scenes? 3) To what extent
do diffusion features contribute to the effectiveness?

A. Hardware and Environments

We use the Stretch RE2 robot [54] for our experiments.
The robot’s mobile base, arm lift, and telescoping arm are
moved in conjunction to reach 6-DOF target waypoints. The
robot’s end effector is a parallel-jaw gripper with rubber
fingertips. An Intel RealSense D435i RGB-D camera is
mounted to the frame which is used both to record demon-
strations and to provide observations during execution. One
of the authors initialized scenes and categorized tasks as
success or failed based on the criteria in Section IV-B.

B. Evaluation Tasks

We evaluate our approach using 14 different real world
manipulation tasks. We design our evaluation tasks to cover a
wide range of contact-rich manipulation behaviors involving
prehensile and non-prehensile motions. The tasks range from
rearranging objects, to multi-step extraction from cluttered
scenes, to tool use, to manipulation of deformable and
articulated objects. Below, we describe each of the tasks and
how success is defined for each task.

1) Pick-and-place: In this task, the robot picks up a bottle
by its top and places it into a bowl. The task is successful
if the robot grasps from the top of the bottle and the bottle
is contained inside of the bowl at the end of execution.

2) Bookshelf extraction: In this task, the robot is required
to do both non-prehensile and prehensile motions to success-
fully extract a slender object from a bookshelf. The target
object is densely packed into the shelf, so the robot must first



Fig. 5. In Diffusion-PbD, features from a pre-trained Stable Diffusion [52] image model are utilized to transfer demonstrated contact points to new scenes.
The examples in this figure show the effectiveness of this method at finding corresponding points in novel viewpoints, objects, and scenes. The reference
points on the left are extracted from human demonstrations, and the corresponding points on the right are predicted through the use of diffusion features.

tip the object with a pushing motion from the top before
grasping and extracting the object. The task is successful
when the robot extracts the target object without displacing
any other objects from the shelf.

3) Occluded pick: For this task, a target object is occluded
by another object in the initial scene. The robot must
first push the occluding object out of the way using non-
prehensile motion and then extract the target object. The task
is successful if the object is extracted by the robot.

4) Occluded place: For this task, the robot must use non-
prehensile motion to push an object out of the way to make
room for the target object on a surface. The target object
is then picked and placed onto the surface. The task is
successful when the target object rests on the target surface.

5) Open drawer: In this task, the robot is required to open
a drawer. This requires a precise grasp of the drawer handle
and careful imitation of the demonstrated trajectory to open
the drawer. The task is successful if the drawer is open at
the end of execution.

6) Close drawer: In this task, the robot is required to
close a drawer. The task is successful if the drawer is closed
at the end of execution.

7) Stack blocks: This task demonstrates a manipulation
program with a multi-step horizon. The robot must stack
a set of three colored blocks in the same order as the
demonstration. The task is successful when the blocks are
stacked in a stable column following the order given by the
demonstration.

8) Unstack blocks: Another multi-step horizon task, the
robot must unstack a set of three colored blocks. The task is
successful when none of the blocks are stacked.

9) Clear table into drawer: Our longest horizon task
where the robot must first open a drawer by the handle, then
pick objects one by one off of a counter and place them
into the drawer, and finally close the drawer. The task is

successful when the drawer is closed with all items from the
counter top contained inside.

10) Unplug charger: In this task the robot must grasp
and pull a laptop charger to remove it from a power outlet
socket. The task is successful when the charger is removed
from the socket.

11) Assemble bento: In this task the robot must pick and
place food items into a bento box, putting the items into the
same sections of the box as the demonstrator.

12) Push chair: In this task the robot must perform a
non-prehensile motion to push a chair into a table.

13) Clean whiteboard: This task demonstrates a manip-
ulation program with tool use. The robot must first grasp
a cloth, then follow the demonstrated trajectory to clean a
marking off of a whiteboard using the cloth. The task is
successful when the whiteboard is cleaned.

14) Fold towel: This task demonstrates a manipulation
program with deformable objects. The robot must first grasp
the corner of a towel, then follow the demonstrated trajectory
to fold the towel. The task is successful when the towel is
folded.

V. RESULTS

To demonstrate the ability of Diffusion-PbD to synthesize
a wide variety of robot manipulation skills, we perform
experiments on a set of 14 tasks, ranging from pick-and-
place, to tool use, to manipulation of deformable and artic-
ulated objects. The results are summarized in Table I. For
each task, we report results averaged across 15 trials, with
a new viewpoint and human demonstration used for each
trial. Diffusion-PbD is able to complete all 14 tasks with an
average success rate of 81.3%.

Generalization to Unseen Scenarios: To understand the
ability of Diffusion-PbD to apply demonstrated manipulation
tasks to new viewpoints, objects, and scenes we perform a



Fig. 6. We evaluate Diffusion-PbD using a Stretch RE2 robot to perform 14 real world manipulation tasks across 5 visually distinct environments. We
show that this approach is effective for single-shot imitation of a wide range of manipulation tasks and generalizes to novel viewpoints, objects, and scenes.

deeper analysis with a representative subset of the manipula-
tion tasks: pick-and-place, open drawer, fold towel, and clear
counter into drawer. For each task, we perform additional
trials across three novel scenarios. First, we perform 15 trials
from unseen viewpoints. Then we perform 15 trials with
unseen objects: for the pick-and-place task bottles distinct
in appearance and size are used, for the drawer task we
use a visually distinct drawer, and for the towel folding
task we use towels of varying colors and sizes. Finally, we
perform 15 trials from an entirely unseen environment. For
each evaluation scenario, we report the average across the 15
trials. The results summarized in Table II show the strong
generalization ability of Diffusion-PbD.

Contribution of Diffusion Features: To evaluate the
major design decision of using features from SD within
our framework, we conduct additional experiments using
two other pre-trained feature spaces commonly used for
correspondence matching in similar robotic applications:
CLIP [55], and DINOv2 [56]. The results in Table I and
Table II highlight the importance of this design decision as
features from SD enable a higher success rate on a range of
manipulation tasks and across a range of previously unseen
scenarios. Figure 7 qualitatively illustrates this advantage,
with examples of the strong correspondence matching en-
abled by the SD features.

Failure Analysis: While the results show that this ap-
proach can be practical for all 14 benchmarked manipulation
tasks, there is still room for improvement. To better under-
stand the failure cases, we analyze the failures in Figure
8, finding that the most common source of failure happens
during demo perception due to inaccuracies in hand-object
detection models, highlighting detection improvements as an
important area for future work.

VI. CONCLUSION

We propose Diffusion-PbD, a novel method for robot
PbD that can synthesize generalizable robot manipulation
programs from observing a single human demonstration.
Our method utilizes pre-trained image foundation models
off-the-shelf to both extract salient structure from human
demonstrations and to transfer that structure to novel scenes.
We perform an evaluation on a Stretch RE2 robot and

Fig. 7. Qualitative comparison of point correspondences using features
from Stable Diffusion [52], DINOv2 [56], and CLIP [55] for scenes with
various visual distinctions from the reference and various amounts of clutter.

demonstrate the ability of our approach to synthesize robot
manipulation programs for a wide-range of different ma-
nipulation tasks. Our analysis shows that Diffusion-PbD
is effective at generalizing demonstrated skills to unseen
viewpoints, objects, and scenes, and highlights the utility of
diffusion features for robot PbD.

Despite the promising results, Diffusion-PbD has multiple
important limitations. First, our approach relies on sampling
a set of waypoints from the provided demonstration. While
this representation allows our approach to imitate a wide
variety of manipulation tasks, some tasks may need a more
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Fig. 8. The distribution of failures for pick-and-place, open drawer, and fold towel tasks across unseen viewpoints, unseen objects, and unseen scenes.
Executions can fail due to errors in hand-object perception, errors in correspondence matching, failure to motion plan, or failure to meet the task requirements.

Task Success Rate
CLIP DINOv2 SD

Pick-and-place 0.86 0.86 0.93
Bookshelf pick 0.40 0.53 0.67
Occluded pick 0.40 0.60 0.80
Occluded place 0.33 0.80 0.87
Open drawer 0.53 0.73 0.80
Close drawer 0.40 0.73 0.73
Clear counter into drawer 0.33 0.66 0.73
Stack blocks 0.53 0.80 0.80
Unstack blocks 0.40 0.80 0.87
Unplug charger 0.66 0.93 0.93
Assemble bento 0.66 0.66 0.80
Push chair 0.86 0.80 0.93
Clean whiteboard 0.66 0.73 0.73
Fold towel 0.60 0.73 0.80

TABLE I
WE PRESENT A SET OF EVALUATIONS ON 14 REAL WORLD TASKS. FOR

EACH TASK THE ROBOT MUST IMITATE A HUMAN DEMONSTRATION.

densely sampled set of waypoints or alternative trajectory
representations for finer grained manipulation which is an
exciting direction for future work. Our approach uses open-
loop execution of actions and could be extended to use
dynamic motion generation in order to handle dynamic
disturbances or changes to the environment during execution.
Additionally, our approach assumes that viable reference
points are visible in new scenes, and future work should
explore strategies for handling missing or occluded objects.
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[3] H. Bekkering, A. WohlschlaÈger, and M. Gattis, “Imitation of gestures
in children is goal-directed,” The Quarterly Journal of Experimental
Psychology Section A, vol. 53, no. 1, pp. 153–164, 2000.

[4] N. J. Hodges, A. M. Williams, S. J. Hayes, and G. Breslin, “What is
modelled during observational learning?” Journal of sports sciences,
vol. 25, no. 5, pp. 531–545, 2007.

Task Eval Scenario Success Rate
CLIP DINOv2 SD

Pick-and-place

Canonical 0.86 0.86 0.93
Unseen Viewpoint 0.66 0.73 0.80
Unseen Objects 0.33 0.73 0.73
Unseen Scene 0.66 0.86 0.86

Open drawer

Canonical 0.60 0.73 0.80
Unseen Viewpoint 0.40 0.66 0.80
Unseen Objects 0.53 0.66 0.73
Unseen Scene 0.40 0.73 0.80

Fold towel

Canonical 0.60 0.73 0.80
Unseen Viewpoint 0.53 0.53 0.73
Unseen Objects 0.33 0.66 0.80
Unseen Scene 0.33 0.73 0.73

Clear counter

Canonical 0.33 0.66 0.73
Unseen Viewpoint 0.26 0.66 0.73
Unseen Objects 0.26 0.53 0.66
Unseen Scene 0.13 0.53 0.66

TABLE II
TO STUDY THE ROBUSTNESS OF DIFFUSION-PBD, WE EVALUATE A

REPRESENTATIVE SUBSET OF TASKS ON UNSEEN VIEWPOINTS, UNSEEN

OBJECTS, AND UNSEEN SCENES.

[5] R. Ramsey, D. M. Kaplan, and E. S. Cross, “Watch and learn: the
cognitive neuroscience of learning from others’ actions,” Trends in
Neurosciences, vol. 44, no. 6, pp. 478–491, 2021.

[6] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[7] W. Si, N. Wang, and C. Yang, “A review on manipulation skill
acquisition through teleoperation-based learning from demonstration,”
Cognitive Computation and Systems, vol. 3, no. 1, pp. 1–16, 2021.

[8] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu, “Viola: Imitation learning for
vision-based manipulation with object proposal priors,” 6th Annual
Conference on Robot Learning (CoRL), 2022.

[9] Y. Zhu, Z. Jiang, P. Stone, and Y. Zhu, “Learning generalizable
manipulation policies with object-centric 3d representations,” in 7th
Annual Conference on Robot Learning, 2023.

[10] T. Lozano-Perez, “Robot programming,” Proceedings of the IEEE,
vol. 71, no. 7, pp. 821–841, 1983.

[11] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Transactions on Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.

[12] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz, “Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective,” in Proceedings of the seventh annual ACM/IEEE inter-
national conference on Human-Robot Interaction, 2012, pp. 391–398.

[13] S. Wermter, M. Elshaw, C. Weber, C. Panchev, and H. Erwin, “Towards
integrating learning by demonstration and learning by instruction in
a multimodal robot,” in Proceedings of the IROS-2003 Workshop on
Robot Learning by Demonstration, 2003, pp. 72–79.

[14] M. Forbes, R. P. Rao, L. Zettlemoyer, and M. Cakmak, “Robot
programming by demonstration with situated spatial language under-
standing,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 2014–2020.



[15] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and
H. Ben Amor, “Language-conditioned imitation learning for robot ma-
nipulation tasks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 13 139–13 150, 2020.

[16] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from ob-
servation: Learning to imitate behaviors from raw video via context
translation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1118–1125.

[17] J. Huang, D. Fox, and M. Cakmak, “Synthesizing robot manipulation
programs from a single observed human demonstration,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 4585–4592.

[18] S. Bahl, A. Gupta, and D. Pathak, “Human-to-robot imitation in the
wild,” arXiv preprint arXiv:2207.09450, 2022.

[19] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song, “Xskill: Cross em-
bodiment skill discovery,” in Conference on Robot Learning. PMLR,
2023, pp. 3536–3555.

[20] S. A. Sontakke, J. Zhang, S. M. Arnold, K. Pertsch, E. Bıyık,
D. Sadigh, C. Finn, and L. Itti, “Roboclip: one demonstration is enough
to learn robot policies,” arXiv preprint arXiv:2310.07899, 2023.

[21] S. Calinon and A. Billard, “Active teaching in robot programming
by demonstration,” in RO-MAN 2007-The 16th IEEE International
Symposium on Robot and Human Interactive Communication. IEEE,
2007, pp. 702–707.

[22] M. Forbes, M. Chung, M. Cakmak, and R. Rao, “Robot programming
by demonstration with crowdsourced action fixes,” in Proceedings of
the AAAI Conference on Human Computation and Crowdsourcing,
vol. 2, 2014, pp. 67–76.

[23] S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama, “Robot
programming by demonstration with interactive action visualizations.”
in Robotics: science and systems, 2014, pp. 1–9.

[24] S. Elliott, R. Toris, and M. Cakmak, “Efficient programming of
manipulation tasks by demonstration and adaptation,” in 2017 26th
IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2017, pp. 1146–1153.

[25] Y. Zhou, Y. Aytar, and K. Bousmalis, “Manipulator-independent rep-
resentations for visual imitation,” arXiv preprint arXiv:2103.09016,
2021.

[26] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,”
in International conference on machine learning. PMLR, 2015, pp.
2256–2265.

[27] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840–6851, 2020.

[28] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[29] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 10 684–10 695.

[30] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P.
Kingma, B. Poole, M. Norouzi, D. J. Fleet et al., “Imagen video: High
definition video generation with diffusion models,” arXiv preprint
arXiv:2210.02303, 2022.

[31] P. Esser, J. Chiu, P. Atighehchian, J. Granskog, and A. Germanidis,
“Structure and content-guided video synthesis with diffusion models,”
in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2023, pp. 7346–7356.

[32] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[33] U. A. Mishra, S. Xue, Y. Chen, and D. Xu, “Generative skill chaining:
Long-horizon skill planning with diffusion models,” in Conference on
Robot Learning. PMLR, 2023, pp. 2905–2925.

[34] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black,
O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan,
D. Sadigh, C. Finn, and S. Levine, “Octo: An open-source generalist
robot policy,” https://octo-models.github.io, 2023.

[35] A. Sridhar, D. Shah, C. Glossop, and S. Levine, “Nomad: Goal masked
diffusion policies for navigation and exploration,” arXiv preprint
arXiv:2310.07896, 2023.

[36] C.-F. Yang, H. Xu, T.-L. Wu, X. Gao, K.-W. Chang, and F. Gao,
“Planning as in-painting: A diffusion-based embodied task plan-

ning framework for environments under uncertainty,” arXiv preprint
arXiv:2312.01097, 2023.

[37] T. Yoneda, L. Sun, B. Stadie, G. Yang, and M. Walter, “To the
noise and back: Diffusion for shared autonomy,” arXiv preprint
arXiv:2302.12244, 2023.

[38] E. Ng, Z. Liu, and M. Kennedy, “Diffusion co-policy for synergistic
human-robot collaborative tasks,” IEEE Robotics and Automation
Letters, 2023.

[39] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh,
C. Tan, J. Peralta, B. Ichter et al., “Scaling robot learning with
semantically imagined experience,” arXiv preprint arXiv:2302.11550,
2023.

[40] Z. Chen, S. Kiami, A. Gupta, and V. Kumar, “Genaug: Retargeting
behaviors to unseen situations via generative augmentation,” arXiv
preprint arXiv:2302.06671, 2023.

[41] A. D. Vuong, M. N. Vu, H. Le, B. Huang, B. Huynh, T. Vo, A. Kugi,
and A. Nguyen, “Grasp-anything: Large-scale grasp dataset from
foundation models,” arXiv preprint arXiv:2309.09818, 2023.

[42] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and
V. Kumar, “Roboagent: Generalization and efficiency in robot ma-
nipulation via semantic augmentations and action chunking,” arXiv
preprint arXiv:2309.01918, 2023.

[43] I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: Introducing web-
scale diffusion models to robotics,” IEEE Robotics and Automation
Letters, 2023.

[44] G. Zhai, X. Cai, D. Huang, Y. Di, F. Manhardt, F. Tombari,
N. Navab, and B. Busam, “Sg-bot: Object rearrangement via
coarse-to-fine robotic imagination on scene graphs,” arXiv preprint
arXiv:2309.12188, 2023.

[45] L. Tang, M. Jia, Q. Wang, C. P. Phoo, and B. Hariharan, “Emergent
correspondence from image diffusion,” in Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[46] G. Luo, L. Dunlap, D. H. Park, A. Holynski, and T. Darrell, “Diffusion
hyperfeatures: Searching through time and space for semantic corre-
spondence,” in Advances in Neural Information Processing Systems,
2023.

[47] G. Zhan, C. Zheng, W. Xie, and A. Zisserman, “What does stable
diffusion know about the 3d scene?” in arXiv:2310.06836, 2023.

[48] D. Shan, J. Geng, M. Shu, and D. F. Fouhey, “Understanding human
hands in contact at internet scale,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp.
9869–9878.

[49] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Gir-
shick, “Segment anything,” arXiv:2304.02643, 2023.

[50] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays,
F. Zhang, C.-L. Chang, M. Yong, J. Lee et al., “Mediapipe: A
framework for perceiving and processing reality,” in Third workshop
on computer vision for AR/VR at IEEE computer vision and pattern
recognition (CVPR), vol. 2019, 2019.

[51] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detec-
tion in single images using multiview bootstrapping,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
2017, pp. 1145–1153.

[52] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” 2021.

[53] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. V. Wyk,
V. Blukis, A. Millane, H. Oleynikova, A. Handa, F. Ramos, N. Ratliff,
and D. Fox, “curobo: Parallelized collision-free minimum-jerk robot
motion generation,” 2023.

[54] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich, “The
design of stretch: A compact, lightweight mobile manipulator for
indoor human environments,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 3150–3157.

[55] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[56] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby,
R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li, W. Galuba,
M. Rabbat, M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou,
J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski, “Dinov2: Learning
robust visual features without supervision,” 2023.

https://octo-models.github.io

	Introduction
	Related Work
	Programming by Demonstration
	Diffusion Models for Robotics

	Diffusion PbD
	Problem Formulation
	Overview
	Demo Perception
	Skill Representation
	Skill Execution

	Experiments
	Hardware and Environments
	Evaluation Tasks
	Pick-and-place
	Bookshelf extraction
	Occluded pick
	Occluded place
	Open drawer
	Close drawer
	Stack blocks
	Unstack blocks
	Clear table into drawer
	Unplug charger
	Assemble bento
	Push chair
	Clean whiteboard
	Fold towel


	Results
	Conclusion
	References

