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Abstract— The performance of prediction-based assistance
for robot teleoperation degrades in unseen or goal-rich environ-
ments due to incorrect or quickly-changing intent inferences.
Poor predictions can confuse operators or cause them to change
their control input to implicitly signal their goal. We present
a new assistance interface for robotic manipulation where an
operator can explicitly communicate a manipulation goal by
pointing the end-effector. The pointing target specifies a region
for local pose generation and optimization, providing interactive
control over grasp and placement pose candidates. We evaluate
this explicit pointing interface against an implicit inference-
based assistance scheme and an unassisted control condition in
a within-subjects user study (N=20), where participants teleop-
erate a simulated robot to complete a multi-step singulation and
stacking task in cluttered environments. We find that operators
prefer the explicit interface, experience fewer pick failures and
report lower cognitive workload. Our code is available at:
github.com/NVlabs/fast-explicit-teleop.

I. INTRODUCTION

Robot telemanipulation is widely useful but demanding,
even for skilled operators. Acting in the world through a
foreign embodiment with limited perception requires the user
to reason not only about the task at hand but about the
abilities and limitations of the robot, as well as the state of the
environment. Assistive teleoperation interfaces can reduce
this burden by automating parts of the robot’s behavior,
increasing safety and comfort for everyone from operators
conducting tight-tolerance assembly in manufacturing to
home users of assistive robots. Teleoperation is also being
used for data collection of human demonstrations, both with
simulated [1–4] and real robots [5–7], to build datasets for
use with imitation learning [1,8] and offline reinforcement
learning [9,10]. Improvements to interfaces are required in
order to make online teleoperation faster and more intuitive,
as well as to improve the quality of trajectories for robot
learning [11,12]. Grasping and placing objects precisely and
smoothly is still difficult for operators due to perception and
haptic gaps [13,14]. Grasps often fail when small clearances
aren’t respected, and the limited visual cues afforded to
operators can cause them to press objects down further than
necessary when placing.

The foundation of most assistive teleoperation systems
is prediction [15–17]. Inferring, for instance, the operator’s
desired trajectory or end-effector goal based on their recent
trajectory and context (i.e. scene, object, task) enables the
automation of subsequent actions. Performant prediction
systems can engage assistance fluently in proportion to their
own confidence. The user teleoperates as they would without
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Fig. 1: Implicit assistance (left) funnels the operator toward the goal
predicted based on (for instance) the recent trajectory. The operator
is not intended to change their input to influence the assistance.
Explicit assistance (right) affords the operator direct control over the
inferred goal by pointing the gripper toward the object of interest.
A local optimization selects a feasible, collision free pose.

assistance. Their control over the predictions is implicit,
arising from how their state or actions correspond with some
model of possible intended behavior.

But the benefits of implicit inference-based assistance are
difficult to realize in practice. Human environments pose
challenges for online trajectory and goal prediction [18,19].
In clutter, where there are numerous possible target objects
in close physical proximity, it is inherently difficult to predict
manipulation targets as many goals may be consistent with
a user’s state or historical input. Poor predictions can lead
the operator to modify their behavior in an attempt to better
signal their goal—a confusing interaction, as the operator’s
mental model of the predictor is likely incorrect. In such
situations, it is preferable to provide an explicit interface that
accommodates the user’s desire to exert direct control over
the predicted intent. Explicit input interfaces usually involve
modal goal-specification interactions which aren’t suitable
for online interaction, or additional input modalities, like
natural language, that introduce complexity and potentially
increase burden.

Our proposed interface for pick and place manipulation,
shown in Fig. 1, leverages “pointing” of the end effector as
an explicit input method, requiring neither an additional input
modality nor a modal interaction. The approach offers assis-
tance for a possible grasp or placement pose via optimization
in a small region around where a ray from the gripper to the
target object (grasping) or from the object in the gripper
(placing) meets the scene geometry. Parallel computation
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allows the system to rank and filter many possible collision-
free candidates and present suggestions that are responsive
to the user’s input at high frequency.

We implemented our proposed explicit interface on a
simulated Franka Emika Panda robot and conducted a user
study comparing it to an implicit-input assistive teleoperation
method on pick-and-place stacking tasks with clutter. We
find that operators prefer the explicit interface, experience
fewer pick failures and report lower cognitive workload.
Our implementation of explicit assistance and study con-
ditions in NVIDIA Omniverse Isaac Sim is available at
github.com/NVlabs/fast-explicit-teleop.

II. RELATED WORK

The design space for assistive teleoperation spans various
types of operator input, different forms of assistance and a
spectrum of manual to automatic engagement [15].

Most assistive teleoperation methods use a form of implicit
input to autonomously generate improved robot actions.
Early methods maintained a probability distribution over
possible goals given users’ recent actions and overrode user
control with actions more in line with optimal trajectories
to the inferred goal [15–17]. When available, data enables
the use of sophisticated predictive models like trajectory
forecasting transformers [20] or multi-modal diffusion poli-
cies [21]. When a task reward is available, it is possible
to use human-in-the-loop deep reinforcement learning [22].
While some of these methods produce assistance based only
on the current state, user interactions with the assistance
are characteristically implicit as the user is not intended to
control the state with the aim of modifying the assistance.

Human-in-the-loop autonomous systems commonly allow
operators to explicitly specify goals, preview generated tra-
jectories and supervise execution [23,24]. Most frequently,
these interfaces use keyboard and mouse control over 6DOF
interactive pose markers, enabling precise goal specification
at the expense of fluency, making them unsuitable online
continuous teleoperation.

Assistance can also come in the form of augmented
control input schemes. [25] used demonstrations to learn
a task-specific low-dimensional control mapping, enabling
operators to control a robot arm using only a 2D joystick.
[26] showed that such task-specific mappings can also be
generated conditionally based on a language description of
a task in a way that also allows natural language corrections
during execution.

Another approach is to dynamically constrain actions
to, for example, avoid collisions with obstacles [27], or
reject probable inadvertent input in a fine manipulation task.
[28] introduced the concept of “virtual fixtures,” registered
geometric overlays, typically specified beforehand using task
knowledge, which produce sensory cues or alter control
behavior as operators move through them. These fixtures
restrict motion within a region, like a virtual ruler confining
end-effector motion to a line.

III. FAST EXPLICIT-INPUT ASSISTANCE

We are interested in generating actions to assist a teleoper-
ator. Abstractly, the generation of these actions—which may
be poses, configurations or trajectories—is the result of an
optimization based on state information and context:

actions = argmax
option∈A

f(option, state, context) (1)

The defining decisions we make about the implementation
of Eq. 1 that result in an effective explicit-input interaction
are:

• to use transparent and controllable state information;
• to prioritize smoothness of the assistance with respect to

state in the selection of f . Both the average and max-
imum variations in assistance for small state changes
affect usability, as abrupt changes can be disorienting;

• and to treat the resulting action as a suggestion subject
to user review and refinement.

Conventional inference-based assistance systems attempt
to represent the space of possible goal poses or next-actions
in A. They select for f a model of the likelihood of the goal
conditioned on the pose or recent trajectory of the robot.

We similarly choose to produce useful poses for the
operator, but we disregard the opaque history of the oper-
ator’s actions and instead rely on immediately controllable
present-state information. We leverage an intuitive “pointing”
metaphor to allow the user to specify the anchor for a
local optimization of an assistance pose. We define the
optimization to be amenable to parallelization, ensuring it
can compute at interactive speeds. The result is a pose
suggestion that the user can ignore or modify by pointing
the gripper before affirmatively accepting.

A. Pointing as Ray Control
Our experience is that the most understandable and con-

trollable aspect of state is where the end-effector is point-
ing. Although pointing is governed by all six degrees of
freedom (DoF) of the end effector pose—which we denote
as ee ∈ SE(3) located between the fingers—it particularly
emphasizes control of the axis component v ∈ R3 of the
axis-angle (v, θ) representation of the SO(3) orientation. For
convenience, we will also leverage the R4×4 transformation
matrix representation of the pose ee consisting of rotation
matrix R = [rx, ry, rz] ∈ R3×3 and translation component
pe ∈ R3. We assign the rz component outwards from the
gripper, ry perpendicular and along the axis of closing, and
rx perpendicular and away from the gripper camera. These
axes are labeled on Fig. 2.

Pointing the axis rz is familiar for operators not only
because it is a necessary component of most manipulation
tasks, but also because it is a means to change the view
of the “eye-in-hand” camera that is often available. When
unobstructed, this view is an innate visualization of the
pointing input upon which crosshairs or a rendered lines can
directly show the pointing axis.

The pointing target is the point pt ∈ R3 at which the
ray extending from the end effector position pe along rz
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Fig. 2: Our realizations of explicit grasping (left) and placing
assistance (right) both center on the interaction of a ray from the
gripper with scene geometry. A projected anchor pose is calculated
then used to select amongst a set of candidate assistance poses.

contacts the scene geometry, and nt is the surface normal
at the target point. These quantities can be approximated
using depth data or a geometric representation that the robot
has access to. They are simple to visualize by (for example)
highlighting the point in a 2D view and drawing a tick mark
in the normal direction.

Previous works have focused on the proximity of the end
effector to assistance candidates, but relative distinctions in
distance are difficult to assess based on a remote 2D view.
Proximity is chiefly a function of the 3DoF end effector
position pe, whereas the axis v of the gripper orientation
is characterized by just the 2 spherical coordinates, azimuth
and elevation. Pointing does still usefully encode a nearness
bias, since the area at which one can point at a given object
is inversely proportional to the square of the distance to the
object. In other words, it is easy to point at things nearby,
grows more difficult for things further away, and quickly
becomes effectively impossible beyond a point. This bias is
reinforced by the fact that one can only point at what can
be seen and further objects are subject to greater occlusion.

B. Grasp Pointing

In order to suggest a possible grasp pose to the operator
using our pointing interface we must define a mapping from
the 6D pointing control to a 6D grasp pose. We denote the
final grasp assistance suggestion as e∗g .

A direct mapping would be to simply displace the current
gripper orientation along the ray to some fixed offset of
the target point, making no modification to the gripper
orientation. However, our experience is that users often
point at oblique angles but nonetheless desire an approach
orthogonal to the object surface. Instead of using rz , we use
the negation of the surface normal nt at the target point pt.

Users generally expect the angle θ about the axis to be
the one that is “most similar” to their current orientation.
To encode this geometrically, we project a reference vector
anchored to the gripper onto the plane defined by the
intersection point pt and the normal vector nt. Any reference
vector may be selected, however it is preferable to use one

that is unlikely to be perpendicular to the plane, like rx or
ry . The minimal rotation is the geodesic between the current
and the projected reference vector.

The resulting grasp anchor pose eg provides an intuitive,
cursor-like interaction when the gripper ray is swept across
the scene. It is unlikely to be a satisfactory grasp on its own,
however, because an orthogonal approach may be inappropri-
ate for the object, or the position may cause contact with the
object or other scene geometry. A generative grasp model
can be used to provide a set A(eg) of candidates near the
anchor. The specification of “near” governs the smoothness
of the assistance interaction, with smaller thresholds ensuring
that the resulting poses do not change substantially as the
cursor moves but necessarily excluding more suitable grasps
that are too far away. Each candidate can be computed and
scored independently, making this step highly parallelizable.
The result nearest the anchor should be taken as grasping
suggestion e∗g . Generally the quality and smoothness of the
assistance improve as more candidates are considered so long
as the computation runs at interactive rates.

C. Placement Pointing
As with grasp pointing, we seek a mapping from the 6D

pointing control to a 6D end-effector placement pose, e∗p.
The object may have been grasped in an arbitrary orien-

tation, so a direct mapping that translates the current pose
along the gripper axis rz toward the target point is unlikely
to be useful for stably placing the object. Instead, we observe
that the object was likely picked from a stable pose where
it rested on a support facet defined by some point po and
normal no pointing in the gravity direction. At the moment
of the pick, the orientation of normal no can be recorded
with respect to the end effector pose ee, and a point po

on the object facet can be estimated by projecting the end-
effector position pe at the moment of the pick onto the scene
geometry revealed after the object is lifted.

It is now intuitive to map the control of the resulting plane
(po,no); the user principally controls the axis no to select
a pose constrained to place the facet point po at the target
point pt and to align the object normal no opposite the target
normal nt. Similar to the grasp mapping, the undetermined
rotation of the object about the target normal is specified
by finding the geodesic from a reference vector on the end
effector (like rx or ry) to the same vector projected onto the
target plane.

The resulting placement anchor pose ep is a direct, cursor-
like projection of the grasped object into a placement, and
is used in a similar manner as the grasp anchor pose. The
anchor itself may not be a feasible placement pose if it
puts the object or the gripper into contact with the scene.
Candidates A(ep) can be generated in the local region around
the anchor using any generative object placement method,
with the candidate nearest the placement anchor pose serving
as the suggestion e∗p to the user.

D. Snapping
As a consequence of prioritizing responsiveness, the range

of inputs which our methods map to any particular assistance



Fig. 3: The operator controls the robot while looking at two camera views displayed picture-in-picture (left). Assistance suggestions are
shown as a “ghost gripper” for grasping and a “ghost shape” for placing actions (right). Ray visualizations are exaggerated for legibility
in print. The experimental task involved participants extracting and stacking blue and pink blocks that were initially scattered in one of
three clutter configurations (bottom).

anchor pose eg or ep is small. Certain “easy” poses like a
perfectly aligned side-grasp might be frustratingly difficult to
specify. We use snapping to nudge the generated assistance
toward these preferred poses, providing the flexibility to con-
trol the grasp suggestion (as is typically needed in cluttered
scenes) or to easily snap into commonly used grasps when
feasible. The behavior of snapping is demonstrated in the
accompanying video.

Snaps are encoded by one or more potential fields ϕ(·)
over poses. After anchor poses eg or ep are calculated, a
local optimization over ϕ occurs, checking to see if there
is a lower potential pose within an ϵ distance threshold that
would breach potential threshold γ. If so, candidates from
A(eg) or A(ep) are ignored and the snap pose is provided as
the suggestion.

In practice, we find that specifying a set of poses that
align with object centroids coupled with proximity potential
ϕ(e∗) = minGi∈G d(e∗, Gi) is useful for picking and placing
and requires no additional task context.

Following [29], we define the distance between the poses
x,y ∈ SE(3) with position components px,py ∈ R3 and
rotational components Rx,Ry ∈ R3×3, as

d(x,y)2 = ||px − py||2 + 2β2(1−
tr(R−1

y Rx)

3
)), (2)

where β weights the translation and rotation contributions to
the distance.

IV. EXPERIMENT

We conducted a within-subjects user study where partic-
ipants completed stacking tasks without assistance (CON),
with implicit inference-based assistance suggestions (IMP),
and with explicit-input assistance suggestions (EXP).

Participants completed a multi-step singulation and stack-
ing task where they created multiple stacks of particularly-
colored blocks from a cluttered pile. The task was designed
to have few prescribed steps and many possible intermediate
goals.

We expected that participants would:
H1 : be most effective at completing the task using EXP.
H2 : make most use of suggestions provided by EXP
H3 : report the lowest workload when using EXP.
H4 : feel that the suggestions from EXP better match their

preferences.
H5 : feel that they understand the behavior EXP better than

that of IMP.

A. System

Participants interact with a Franka Panda robot simulated
in NVIDIA Omniverse Isaac Sim. Grasp sampling and colli-
sion checking operations are GPU accelerated using NVIDIA
Warp [30].

a) Input: Users provide input using a 6DOF mouse, a
spring-suspended puck that they can displace in three spatial
dimensions while simultaneously panning, tilting, or twisting
to provide 3D rotation [31].

b) Robot Control: User input is interpreted as a twist
goal for the robot’s end-effector. We integrate the twist over
a fixed timestep, apply the resulting transformation to the
current end-effector pose, and provide the result as a pose
goal to the robot controller, a Riemannian Motion Policy
implemented in RMPFlow [32]. To avoid large accelerations,
the pose goal is passed through a low pass filter.

c) Camera Control: Users operate the robot while
monitoring a fixed view, showing most of the robot and
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Fig. 4: Survival analysis (↑) of participant’s completion of the
task over time. Lines plot percentage of participants that completed
the task at the time and Xs mark termination without completion.
Differences lie within the 95% confidence interval, with a trend that
the probability of having completed the task grows most quickly
for the explicit input interface and reaches a higher peak.

the workspace, and a dynamic view affixed to the gripper
pointing towards the fingers. As shown in 3, one view is
foregrounded at a time, and user input is interpreted in the
frame of the foregrounded view.

d) Assistance: Offers of assistance are visualized as
“ghosts,” as shown in Fig. 3. Holding a button on the 3D
mouse engages the assistance, forwarding the suggested pose
as a goal for the controller with an additional preprocessing
step to ensure poses are approached from the front.

e) Explicit Assistance Condition (EXP): We imple-
ment our grasp pointing assistance approach using a simple
approach-vector parameterized sampling scheme, looking for
the nearest non-colliding pose amongst 7125 translated and
rotated candidates around the grasp anchor pose. The sam-
ples are distributed in a fixed 2cm diameter, 1cm thick disc
pattern. We did not use a placement sampler as we assessed
that direct control over the placement anchor pose was
sufficient for the experimental task. Raycasting is performed
against a mesh representation of the scene. We generate axis
aligned grasp and placement poses and use them to define a
snapping potential as described in Sec. III-D.

f) Implicit Inference-Based Assistance Condition
(IMP): Following [15], we attempt to infer the user’s goal
by selecting the most-probable goal G∗ from a predefined
set of candidates G based on a recent window of the robot’s
trajectory ξS→U from start pose S to current pose U :

G∗ = argmax
G∈G

(
e−CG(ξS→U )−CG(ξ∗U→G)

e−CG(ξ∗S→G)
· e−d(U,G)

)
(3)

The first term assigns greater likelihood to goals for which
the user’s trajectory, completed optimally by ξ∗U→G, has
cost similar to the cost of the optimal trajectory ξ∗S→G.
The second term serves as a prior, assigning more mass to
goals that are closer to current pose. We use CG(ξX→Y ) =
d(X,Y )2 and reset S if 2 seconds pass with no control input.
The same set of axis-aligned grasp and placement poses used
for snaps are used as G, and collision checking is performed
across this set to ensure no in-collision poses are offered.

TABLE I: Comparison of Condition Preference Counts ↑

A B CA CB
CA

CA+CB
% (CI) p

E
Q

1 EXP CON 11 1 92 (62, 100) .010
" IMP " 8 60 (34, 80) .648

CON " 1 " 11 ( 0, 48) .078

E
Q

2 EXP CON 10 3 79 (49, 95) .277
" IMP " 7 61 (33, 82) .688

CON " 3 " 30 ( 7, 65) .688

E
Q

3 EXP CON 14 1 94 (68, 100) .003
" IMP " 5 75 (49, 91) .127

CON " 1 " 17 ( 0, 64) .219

E
Q

4 EXP CON 14 2 88 (62, 98) .013
" IMP " 4 79 (52, 94) .061

CON " 1 " 33 ( 4, 78) .687

B. Procedure

Participants were told they would use a 3D mouse to
control a robot with three different systems, some of which
would provide suggestions they could use to help them
complete tasks. Each session began with an interactive 3D
mouse tutorial, followed by a robot control tutorial where
they had to grasp and lift a block, and finally an assistance
tutorial which demonstrated what suggestions of assistance
would look like and how to use them.

For each condition, participants were given a brief verbal
introduction to how the system would behave and asked to
“warm up” by stacking a block. Once satisfied that they
understood the system, participants completed a single stack
task for 3 minutes, then had a maximum of 7 minutes to
complete the multi-step stacking task. A post-interaction
survey included the NASA-TLX questionnaire [33], three
agreement questions regarding their sense of control over
the suggestions (reported as assistance composite) and one
regarding their sense of understanding. Rating questions were
represented using 7–point scales.

A final set of forced-choice questions probed which sys-
tem “felt easiest to use” (EQ1), and which system had
the suggestions that “made it easiest to do the task the
way [they] wanted to” (EQ2) which they best understood
“why [the suggestions] behaved the way they did” (EQ3),
and “felt most in control of” (EQ4). Finally, participants
completed demographic questions and rated their familiarity
with robots, operating robot arms, 3D mice, and playing
video games. Sessions lasted between 45-60 minutes total.

a) Participants: We recruited 20 participants (18 male,
2 female, aged 19-39 M=25.1, SD=5.45) from the University
of Washington under an IRB approved study plan. Many
participants were roboticists, rating their familiarity with
robots highly (M=4.80, SD=2.08, 7–point scale). Only two
participants reported being familiar with 3D-mice (rating >4
on 7–point scale). All participants were right handed.

C. Methods

We analyze logged events, survey data and supplemen-
tal annotations using generalized linear mixed models to
account for inter- and intra-participant variance. The effect



TABLE II: NASA-TLX scores ↓

A B MA(SEA) MB(SEB) MA −MB(CI) p

EXP IMP 3.42 (.25) 3.77 (.25) -.36 ( -.97, .25) .335
" CON " 4.33 (.25) -.92 (-1.53, -.31) .002

IMP " 3.77 (.25) " -.56 (-1.17, .05) .079

TABLE III: Assistance Subjective Scores ↑

EXP IMP
Question MA SEA MB SEB MA −MB(CI) p

Composite 4.70 .253 3.44 .253 1.25 ( .52, 1.99) .002
Understanding 4.62 .274 4.29 .274 .33 ( -.47, 1.14) .398

TABLE IV: Failure Counts ↓

A B MA(SEA) MB(SEB) MA/MB(CI) p

Pi
ck

EXP IMP 1.13 ( .32) 2.48 ( .59) .46 ( .23, .91) .028
" CON " 4.22 (1.15) .27 ( .10, .75) .008

IMP " 2.48 ( .59) " .59 ( .27, 1.27) .242

Pl
ac

e EXP IMP .55 ( .18) .59 ( .18) .93 ( .38, 2.29) .980
" CON " 1.22 ( .30) .45 ( .20, .98) .043

IMP " .59 ( .18) " .48 ( .23, 1.04) .065

of an experimental condition is given as either a ratio or
difference of the estimated marginal mean against another
contrasting condition, and significance is determined using
95% confidence intervals. We conducted survival analysis
to characterize task completion rates over time. Statistical
details are reported in the supplementary materials.

D. Results

H1: Participants experienced significantly fewer failed
picks in EXP when compared to IMP or CON, and there
was a trend indicating that they experienced fewer place
failures as well, as shown in Tab. IV. There were trends
indicating that users of the explicit interface complete the
task with higher frequency and stack objects more quickly, as
shown in Fig. 4, however the differences are not statistically
significant.

H2: There was no measurable difference in the duration
or number of engagements of the assistance between the
implicit and explicit interfaces. Qualitatively, we observed
that some participants made use of the explicit assistance
system without engaging it.

H3: Mean workload was lowest for the explicit condition,
however the difference was only significant when compared
to the control condition. The implicit input condition was
rated as higher workload than the explicit condition and
lower than no assistance at all, however these differences
were not statistically significant, as shown in Tab. II.

H4: Participants indicated that the explicit assistance in-
terface was more controllable, rating it 1.25 points (CI .52,
1.99) more highly on average on our assistance composite
scale (reported in Tab. III and Fig. 5).

H5 Participants rated their understanding higher on av-
erage, but the difference was not statistically significant as
shown in Tab. III and Fig. 5.

CON

IMP

EXP

1 2 3 4 5 6 7

NASA−TLX

IMP

EXP

1 2 3 4 5 6 7

Assistance Composite

IMP

EXP

1 2 3 4 5 6 7

Understanding

Fig. 5: Raw data for subjective scores collected on 7–point scale
with density estimates overlaid. Point and bar show estimated
marginal mean with 95% confidence interval.

V. DISCUSSION AND LIMITATIONS

We designed an explicit-input teleoperation interface that
is interpretable, responsive, unobtrusive and capable. These
design principles have inherent tradeoffs. For example, mak-
ing assistance more capable may result in a less responsive
and less usable system. Reducing latency is only desirable if
interpretability can be maintained, a trade-off that often ap-
pears when considering how to configure anytime sampling-
based planners.

Our implementation is deployed in simulation, making
it applicable to simulated data collection or robot teaching
interactions. Porting our system to teleoperation of a real
robot would require the integration of appropriate genera-
tive grasp- and placement-pose models, as well as object
state estimation or point cloud-based occupancy checking
methods. Our experimental assessment of the interface in-
forms and motivates the future development of physical
implementations. Future work should also explore placement
assistance with objects and support surfaces that are not well-
approximated as planes.

VI. CONCLUSION

We contribute a new framing for assistance interactions
based on explicit input and two new algorithms and inter-
faces for online teleoperation, designed to leverage GPU-
based parallel computation to calculate grasping and placing
feasible options online—even in clutter. Our work goes
beyond individual picks by also considering assistance during
placement, thus offering a complete workflow for multi-step
pick and place tasks. The results of our study highlight
the promise of this new kind of assistance interaction, and
motivate us to further explore how accelerated computation
can augment teleoperation.
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APPENDIX A

SYSTEM

All participants interacted with the simulation running
in NVIDIA Omniverse Isaac Sim 2022.2.0 on a machine
with an RTX 3060 Ti. The simulation ran at interactive
framerates, averaging about 38fps and dipping to lows of
about 15fps when participants created large numbers of
contacts by pushing through many blocks at once.

The bottleneck computation in the assistance systems was
the filtering step where generated poses were rejected if
they created collisions between the gripper and the scene.
GPU acceleration was necessary for considering thousands
of candidates each frame, as shown in the performance
comparison in Fig. 7. Checking that candidates had feasible
inverse kinematics solutions was not feasible at the time of
the study. Participants encountered unreachable suggestions
only infrequently because the block scatterings were placed
comfortably within the robot’s workspace. Participants that
knocked or placed blocks further away were more likely to
encounter unreachable suggestions.

A 3DConnexion SpaceMouse Pro was used for all control
input. The input mapping used was provided to participants
as a printout (shown in Fig. 6 for reference during the study.

APPENDIX B

TRAJECTORY LABELING

Participant stacking trajectories were manually annotated
by two of the authors using ELAN [34]. The events annotated
and their descriptions are given in Tab. V. Only a subset of
the events were analyzed for this work.

APPENDIX C

STATISTICAL DETAILS

All analyses were conducted in R. Linear mixed models
(LMMs) and generalized linear mixed models (GLMMs)
were fit using lme4 [35] or glmmTMB [36] when modeling
zero-inflated distributions. Estimated marginal means were
computed using emmeans [37]. Exploratory factor analysis

Fig. 6: The mapping of buttons to system controls used during the
study.
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Fig. 7: GPU acceleration is necessary to check thousands of
candidate grasp poses for scene collisions while maintaing system
responsiveness. GPU results from an NVIDIA RTX 3060 Ti,
compared to single-threaded CPU execution on an AMD Ryzen
9 5900X.

was conducted using psych [38], and survival analysis was
conducted using survival [39].

Where presented, models are described in Wilkinson no-
tation [40]. Linear mixed models were used for continous
response variables, and Poisson GLMMs with a log link
function were used to model count data. For linear mixed
models, the Kenward-Roger method of estimating degrees
of freedom was used.

A. Subjective Assistance Scores

Users responded to four Likert items after experiencing
assisted conditions (either IMP and EXP). The items’ state-
ments are shown in Tab. VI. We conducted an exploratory
factor analysis (EFA) using the minimum residual method
to identify the structure of responses to these novel items.
The EFA indicated that a one-factor solution was sufficient,
however item Q9 showed low communality, so it was an-
alyzed as a standalone item, “understanding.” Responses to
the remaining items were averaged to form the “assistance
composite” score.
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TABLE V: Event Codes and Descriptions

Code Description

Tasks
pickt Successful pick: task block.
picko Successful pick: other block.
release Release with support. Code moment of release, then code

outcome when it is clear.
drop Drop (the block in the gripper). Code moment of release,

then code outcome when it is clear.
place Successful place: Stable place (of object in gripper). Code

moment object stable at rest.

Errors
erkno Deconstructed (“knocked over”) existing tower.
erbut Unintentional drop, likely due to accidental button press.
erair Unsuccessful pick attempt, air grasp.
erpop Unsuccessful pick attempt, pop or slip out of gripper.
erfal Unsuccessful place attempt, contacted tower but fell.
erpmi Unsuccessful place attempt, missed tower.
ercon Object lost from gripper due to contact with scene.

Milestones
blue1 Assumed at start. Code after errors that cause deconstruc-

tion.
blue2
blue3
pink1 Assumed at start. Code after errors that cause deconstruc-

tion.
pink2
pink3

The responses for the composite scale and standalone
item were both independently analyzed using a LMM that
accounted for the condition as well as inter-participant dif-
ferences.

SubjectiveScore ∼ Condition + (1|Subject)

The resulting estimated marginal means are shown in
Tab. III. Means were compared using t tests.

B. Condition Preferences

For each of the forced-choice preference questions, a
multinomial test was performed to evaluate whether partic-
ipants’ preferences among the three conditions were evenly
distributed. Tests for questions EQ1, EQ3, and EQ4 were
significant, while a test of EQ2 was not.

Pairwise binomial tests were conducted to compare pref-
erences between each pair of conditions, using Holm-
Bonferroni corrections to account for multiple comparisons.
The results of the pairwise comparisons are shown in Tab. I.
Responses to question EQ0 were highly similar to that of
the other questions, but are given in separate table Tab. VII
for completeness.

C. Pick Failure Count

Pick failure models incorporated order, condition and
block configuration factors as well as participant random
effects.

A GLMM with a Poisson link function was used to model
the count data. Excess zeros were observed in the baseline
condition (CON), so a zero-inflation binomial term with the
condition as the sole fixed effect was incorporated.

TABLE VI: Survey Questions and Codes

Code Description

NASA TLX
Q1 How mentally demanding was the task?
Q2 How physically demanding was the task?
Q3 How hurried or rushed was the pace of the task?
Q4 How successful were you in accomplishing what you

were asked to do?
Q5 How hard did you have to work to accomplish your

level of performance?
Q6 How insecure, discouraged, irritated, stressed, and an-

noyed were you?

Agreement
Q7 “The suggestions made it easy to accomplish the task.”
Q8 “The suggestions made it easy to accomplish the task

in the way that I wanted.”
Q9 “I understood why the suggestions behaved the way

they did.”
Q10 “I was in control of the suggestions.”

Open-ended
Q11 Briefly describe the strategy you used for completing

the task.
Q12 What were your biggest frustrations with this system?

Concluding Questions
EQ0 Which system was most effective for the task?
EQ1 Which system felt easiest to use?
EQ2 Which system’s suggestions made it easiest to do the

task the way you wanted to?
EQ3 With which system did you best understand why the

suggestions behaved the way they did?
EQ4 With which system did you feel most in control of the

suggestions?
EQ5 What were the major reasons for your choices?

TABLE VII: Comparison of condition preference counts for EQ0

A B CA CB
CA

CA+CB
% CI p

E
Q

0 EXP CON 12 1 92 (64, 100) .010
" IMP " 7 63 (38, 84) .359

CON IMP 1 " 13 ( 0, 53) .141

PickFailureCount ∼ Order ∗ Condition
+ Configuration + (1|Subject)

A Type III Wald chi-square test was conducted to examine
the effects of order, condition, environment, and their interac-
tion on the number of pick failures. The main effect of order
was significant, χ2(2) = 11.40, p = .003, indicating that
the number of pick failures differed depending on the order
the condition was experienced in, consistent with a learning
effect. The main effect of condition was also significant,
χ2(2) = 14.10, p < .001, suggesting differences in pick
failures across conditions. The main effect of environment
was not statistically significant, χ2(2) = 5.46, p = .065,
indicating that the environment did not have a significant
effect on the number of pick failures.

A significant interaction effect was found between order
and condition, χ2(4) = 13.81, p = .008, suggesting that the
effect of order on pick failures depends on the condition.
The intercept was also significant, χ2(1) = 52.37, p < .001,
indicating a significant baseline level of pick failures.
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Fig. 8: Counts of pick and place errors observed per participant by
condition. Point and bar show estimated marginal mean and 95%
confidence interval.

Estimated marginal means for this model, given in Tab. IV,
were averaged over levels of order and environment. They
are plotted along with the underlying observations in Fig. 8.
Pairwise t tests were conducted, with p values adjusted using
the Tukey method for comparing a family of 3 estimates to
account for multiple comparisons.

D. Place Failure Count

Pick failure models incorporated fixed condition and ran-
dom participant effects.

PlaceFailureCount ∼ Condition + (1|Subject)

A Type III Wald chi-square test was conducted to examine
the effect of condition on the number of placement failures.
The main effect of condition was statistically significant,
χ2(2) = 8.20, p = .017, indicating that the number of
placement failures differed across the levels of condition. The
intercept was not statistically significant, χ2(1) = 0.63, p =
.427, suggesting that the number of placement failures in
the control condition (CON) was typically indistinguishable
from zero.

Estimated marginal means for the place failure model
are given in Tab. IV and plotted along with the underlying
observations in Fig. 8. p values were adjusted using the
Tukey method for comparing a family of 3 estimates to
account for multiple comparisons.

E. Workload

Factors for condition order and block configuration (which
of the three block scatterings, shown in Fig. 3d was used for
the trial) were considered, but did not significantly affect
the model’s outcome or fit, and are not included in the final
analysis.

Workload ∼ Condition + (1|Subject)

A Type III Wald chi-square test was conducted to ex-
amine the effect of condition on workload. The effect was
statistically significant, χ2(2) = 15.27, p < .001, indicating

that workload differed across conditions. Estimated marginal
means of the workload model are given in Tab. II. Pairwise
t tests were conducted, and p values were adjusted using
the Tukey method for comparing a family of 3 estimates to
account for multiple comparisons.

F. Survival Analysis

The Kaplan-Meier estimator was used to characterize
participant’s progression, with the resulting model shown
in Fig. 4. While surviving longer is usually the desired
observation in a survival analysis (e.g. when analyzing
mortality data of patients receiving experimental medical
interventions), our objective is for participants to complete
the task more quickly. We invert the typical Y-axis “survival”
rate and display completion (or “mortality”) instead, so that
the plot may still be read as higher-is-better.
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